Syed Bustan Fatima Warsi , Biranchi Panda , Pankaj Biswas
{"title":"利用临界纤维量和粗骨料开发超导应变硬化 3D 打印混凝土复合材料","authors":"Syed Bustan Fatima Warsi , Biranchi Panda , Pankaj Biswas","doi":"10.1016/j.addma.2024.104541","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a promising approach of integrating coarse aggregates and steel fibers (smooth straight and corrugated) into 3D printed concrete to enhance both strain-hardening and ductility properties. The research delves into the engineering design of fiber reinforced 3D printed concrete by analysing the effect of critical fiber volume and coarse aggregate addition on concrete tensile properties. The combination of coarse aggregate and fiber enhances the material ability to withstand increasing loads by promoting plastic deformation, while mitigating the crack formation and propagation. Experimental methodology for engineering design of fiber reinforced 3D printed concrete is elucidated via critical fiber volume analysis, strain hardening analysis, and ductility assessment under direct tensile loading. The results indicate synergistic effect of corrugated fibers and coarse aggregates on the tensile properties and unlike straight smooth fiber, corrugated long fibers significantly contribute to excellent strain hardening behaviour. The new 3D printed concrete composite developed in this study exhibited distinctive yield point with high strain hardening factor (1.62), ductile factor (10.86), and enhanced energy absorption capability (+105 kJ/m³). These enhanced properties make the material particularly suitable for applications in seismic-resistant structures and other load-bearing applications where ductility and energy absorption are critical.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104541"},"PeriodicalIF":10.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of ultra-ductile strain hardening 3D printed concrete composite utilizing critical fiber volume and coarse aggregate\",\"authors\":\"Syed Bustan Fatima Warsi , Biranchi Panda , Pankaj Biswas\",\"doi\":\"10.1016/j.addma.2024.104541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a promising approach of integrating coarse aggregates and steel fibers (smooth straight and corrugated) into 3D printed concrete to enhance both strain-hardening and ductility properties. The research delves into the engineering design of fiber reinforced 3D printed concrete by analysing the effect of critical fiber volume and coarse aggregate addition on concrete tensile properties. The combination of coarse aggregate and fiber enhances the material ability to withstand increasing loads by promoting plastic deformation, while mitigating the crack formation and propagation. Experimental methodology for engineering design of fiber reinforced 3D printed concrete is elucidated via critical fiber volume analysis, strain hardening analysis, and ductility assessment under direct tensile loading. The results indicate synergistic effect of corrugated fibers and coarse aggregates on the tensile properties and unlike straight smooth fiber, corrugated long fibers significantly contribute to excellent strain hardening behaviour. The new 3D printed concrete composite developed in this study exhibited distinctive yield point with high strain hardening factor (1.62), ductile factor (10.86), and enhanced energy absorption capability (+105 kJ/m³). These enhanced properties make the material particularly suitable for applications in seismic-resistant structures and other load-bearing applications where ductility and energy absorption are critical.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":\"95 \",\"pages\":\"Article 104541\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860424005876\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424005876","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种将粗骨料和钢纤维(光滑的直纤维和波纹纤维)融入三维打印混凝土以增强应变硬化和延展性能的可行方法。研究通过分析临界纤维量和粗骨料添加量对混凝土拉伸性能的影响,深入探讨了纤维增强 3D 打印混凝土的工程设计。粗骨料和纤维的组合通过促进塑性变形增强了材料承受载荷增加的能力,同时缓解了裂缝的形成和扩展。通过临界纤维量分析、应变硬化分析和直接拉伸加载下的延性评估,阐明了纤维增强 3D 打印混凝土工程设计的实验方法。结果表明,波纹纤维和粗集料对拉伸性能有协同作用,与直的光滑纤维不同,波纹长纤维能显著促进优异的应变硬化性能。本研究中开发的新型 3D 打印混凝土复合材料具有独特的屈服点、高应变硬化因子(1.62)、延展因子(10.86)和更强的能量吸收能力(+105 kJ/m³)。这些增强的特性使该材料特别适合应用于抗震结构和其他对延展性和能量吸收至关重要的承重应用领域。
Development of ultra-ductile strain hardening 3D printed concrete composite utilizing critical fiber volume and coarse aggregate
This study presents a promising approach of integrating coarse aggregates and steel fibers (smooth straight and corrugated) into 3D printed concrete to enhance both strain-hardening and ductility properties. The research delves into the engineering design of fiber reinforced 3D printed concrete by analysing the effect of critical fiber volume and coarse aggregate addition on concrete tensile properties. The combination of coarse aggregate and fiber enhances the material ability to withstand increasing loads by promoting plastic deformation, while mitigating the crack formation and propagation. Experimental methodology for engineering design of fiber reinforced 3D printed concrete is elucidated via critical fiber volume analysis, strain hardening analysis, and ductility assessment under direct tensile loading. The results indicate synergistic effect of corrugated fibers and coarse aggregates on the tensile properties and unlike straight smooth fiber, corrugated long fibers significantly contribute to excellent strain hardening behaviour. The new 3D printed concrete composite developed in this study exhibited distinctive yield point with high strain hardening factor (1.62), ductile factor (10.86), and enhanced energy absorption capability (+105 kJ/m³). These enhanced properties make the material particularly suitable for applications in seismic-resistant structures and other load-bearing applications where ductility and energy absorption are critical.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.