B. Suryanarayana , K.L.V. Nagasree , P.S.V. Shanmukhi , Jasgurpreet Singh Chohan , N. Murali , D. Parajuli , Tulu Wegayehu Mammo , Khalid Mujasam Batoo , Muhammad Farzik Ijaz , K. Samatha
{"title":"取代 Cu2+/Ce3+ 阳离子对钴纳米铁氧体结构、磁性和电性的影响","authors":"B. Suryanarayana , K.L.V. Nagasree , P.S.V. Shanmukhi , Jasgurpreet Singh Chohan , N. Murali , D. Parajuli , Tulu Wegayehu Mammo , Khalid Mujasam Batoo , Muhammad Farzik Ijaz , K. Samatha","doi":"10.1016/j.ceramint.2024.09.270","DOIUrl":null,"url":null,"abstract":"<div><div>The nano ferrite compounds Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2-y</sub>Ce<sub>y</sub>O<sub>4</sub> (with x values of 0.0, 0.25, 0.5, and 0.75, and y values of 0.0, 0.03, 0.06, and 0.09) were synthesized through the sol-gel auto-combustion method. The characteristics of spinel ferrites were tailored by creating nano ferrites with desirable properties, which were then sintered at 1150 °C for 2 h in the presence of rare earth (Ce<sup>3+</sup>) and transition metals (Cu<sup>2+</sup>). They were investigated using dielectric, FTIR, FESEM, XRD, VSM, and DC electrical resistivity experiments. XRD examination verified the samples' cubic spinel structure by measuring the average crystallite size, x-ray density, and lattice constant. FESEM images revealed grain sizes ranging from 41.07 to 156 nm. FTIR spectra in the range of 415 cm<sup>−1</sup> to 430 cm<sup>−1</sup> further supported the substitution of Cu<sup>2+</sup>/Ce<sup>3+</sup> ions in the tetrahedral sites, indicated by an increase in the lattice parameter. Measurements of the remanence ratio, saturation magnetization, anisotropy constant, coercivity, and magnetic moment, among other magnetic characteristics, were made. Higher concentrations of Cu<sup>2+</sup>/Ce<sup>3+</sup> ions were found to considerably reduce magnetic saturation (Ms), coercivity (Hc), and remanence (Mr). These materials were semiconducting because their activation energy varied between 0.52 and 0.62 eV, and their DC resistivity increased with increasing Cu<sup>2+</sup>/Ce<sup>3+</sup> concentration. Above 1 MHz, the dielectric properties became frequency-independent and decreased with increasing frequency. These ferrites seem highly potential for devices working at high frequency.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 49254-49262"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of substituting Cu2+/Ce3+ cations on the structural, magnetic and electrical properties of cobalt nano ferrites\",\"authors\":\"B. Suryanarayana , K.L.V. Nagasree , P.S.V. Shanmukhi , Jasgurpreet Singh Chohan , N. Murali , D. Parajuli , Tulu Wegayehu Mammo , Khalid Mujasam Batoo , Muhammad Farzik Ijaz , K. Samatha\",\"doi\":\"10.1016/j.ceramint.2024.09.270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The nano ferrite compounds Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2-y</sub>Ce<sub>y</sub>O<sub>4</sub> (with x values of 0.0, 0.25, 0.5, and 0.75, and y values of 0.0, 0.03, 0.06, and 0.09) were synthesized through the sol-gel auto-combustion method. The characteristics of spinel ferrites were tailored by creating nano ferrites with desirable properties, which were then sintered at 1150 °C for 2 h in the presence of rare earth (Ce<sup>3+</sup>) and transition metals (Cu<sup>2+</sup>). They were investigated using dielectric, FTIR, FESEM, XRD, VSM, and DC electrical resistivity experiments. XRD examination verified the samples' cubic spinel structure by measuring the average crystallite size, x-ray density, and lattice constant. FESEM images revealed grain sizes ranging from 41.07 to 156 nm. FTIR spectra in the range of 415 cm<sup>−1</sup> to 430 cm<sup>−1</sup> further supported the substitution of Cu<sup>2+</sup>/Ce<sup>3+</sup> ions in the tetrahedral sites, indicated by an increase in the lattice parameter. Measurements of the remanence ratio, saturation magnetization, anisotropy constant, coercivity, and magnetic moment, among other magnetic characteristics, were made. Higher concentrations of Cu<sup>2+</sup>/Ce<sup>3+</sup> ions were found to considerably reduce magnetic saturation (Ms), coercivity (Hc), and remanence (Mr). These materials were semiconducting because their activation energy varied between 0.52 and 0.62 eV, and their DC resistivity increased with increasing Cu<sup>2+</sup>/Ce<sup>3+</sup> concentration. Above 1 MHz, the dielectric properties became frequency-independent and decreased with increasing frequency. These ferrites seem highly potential for devices working at high frequency.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"50 23\",\"pages\":\"Pages 49254-49262\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884224042883\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224042883","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Impact of substituting Cu2+/Ce3+ cations on the structural, magnetic and electrical properties of cobalt nano ferrites
The nano ferrite compounds Co1-xCuxFe2-yCeyO4 (with x values of 0.0, 0.25, 0.5, and 0.75, and y values of 0.0, 0.03, 0.06, and 0.09) were synthesized through the sol-gel auto-combustion method. The characteristics of spinel ferrites were tailored by creating nano ferrites with desirable properties, which were then sintered at 1150 °C for 2 h in the presence of rare earth (Ce3+) and transition metals (Cu2+). They were investigated using dielectric, FTIR, FESEM, XRD, VSM, and DC electrical resistivity experiments. XRD examination verified the samples' cubic spinel structure by measuring the average crystallite size, x-ray density, and lattice constant. FESEM images revealed grain sizes ranging from 41.07 to 156 nm. FTIR spectra in the range of 415 cm−1 to 430 cm−1 further supported the substitution of Cu2+/Ce3+ ions in the tetrahedral sites, indicated by an increase in the lattice parameter. Measurements of the remanence ratio, saturation magnetization, anisotropy constant, coercivity, and magnetic moment, among other magnetic characteristics, were made. Higher concentrations of Cu2+/Ce3+ ions were found to considerably reduce magnetic saturation (Ms), coercivity (Hc), and remanence (Mr). These materials were semiconducting because their activation energy varied between 0.52 and 0.62 eV, and their DC resistivity increased with increasing Cu2+/Ce3+ concentration. Above 1 MHz, the dielectric properties became frequency-independent and decreased with increasing frequency. These ferrites seem highly potential for devices working at high frequency.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.