Kai Liao , Wenjun Wang , Chunjin Wang , Chi Fai Cheung
{"title":"利用飞秒激光多扫描在硅玻璃上制作微通道:从表面生成机制到形态控制","authors":"Kai Liao , Wenjun Wang , Chunjin Wang , Chi Fai Cheung","doi":"10.1016/j.ceramint.2024.09.308","DOIUrl":null,"url":null,"abstract":"<div><div>Femtosecond laser processing has become a critical technique for the microfabrication of hard and brittle materials, particularly in microfluidic device applications. This study focuses on the fabrication of microchannels with controllable cross-sectional profiles in silica glass, a material known for its excellent physical and chemical properties. Through a combination of experimental research and theoretical analysis, the surface generation mechanisms governing microchannel morphology are investigated, alongside the influence of various processing parameters on the surface roughness at the microchannel bottom. A comprehensive optimization method is developed to control sidewall taper and surface roughness by adjusting laser scanning paths and modes. Utilizing a composite scanning approach, the study achieves near-rectangular microchannels with average sidewall taper angles below 5° and surface roughness (Sa) of 2.53 μm. These results provide a new strategy for precise control of microchannel morphology in silica glass, offering significant potential to enhance the efficiency and precision of microfluidic device fabrication, with broad applications in both industrial and research settings.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 49634-49642"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of microchannels on silica glass by femtosecond laser multi-scan: From surface generation mechanism to morphology control\",\"authors\":\"Kai Liao , Wenjun Wang , Chunjin Wang , Chi Fai Cheung\",\"doi\":\"10.1016/j.ceramint.2024.09.308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Femtosecond laser processing has become a critical technique for the microfabrication of hard and brittle materials, particularly in microfluidic device applications. This study focuses on the fabrication of microchannels with controllable cross-sectional profiles in silica glass, a material known for its excellent physical and chemical properties. Through a combination of experimental research and theoretical analysis, the surface generation mechanisms governing microchannel morphology are investigated, alongside the influence of various processing parameters on the surface roughness at the microchannel bottom. A comprehensive optimization method is developed to control sidewall taper and surface roughness by adjusting laser scanning paths and modes. Utilizing a composite scanning approach, the study achieves near-rectangular microchannels with average sidewall taper angles below 5° and surface roughness (Sa) of 2.53 μm. These results provide a new strategy for precise control of microchannel morphology in silica glass, offering significant potential to enhance the efficiency and precision of microfluidic device fabrication, with broad applications in both industrial and research settings.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"50 23\",\"pages\":\"Pages 49634-49642\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884224043426\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224043426","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Fabrication of microchannels on silica glass by femtosecond laser multi-scan: From surface generation mechanism to morphology control
Femtosecond laser processing has become a critical technique for the microfabrication of hard and brittle materials, particularly in microfluidic device applications. This study focuses on the fabrication of microchannels with controllable cross-sectional profiles in silica glass, a material known for its excellent physical and chemical properties. Through a combination of experimental research and theoretical analysis, the surface generation mechanisms governing microchannel morphology are investigated, alongside the influence of various processing parameters on the surface roughness at the microchannel bottom. A comprehensive optimization method is developed to control sidewall taper and surface roughness by adjusting laser scanning paths and modes. Utilizing a composite scanning approach, the study achieves near-rectangular microchannels with average sidewall taper angles below 5° and surface roughness (Sa) of 2.53 μm. These results provide a new strategy for precise control of microchannel morphology in silica glass, offering significant potential to enhance the efficiency and precision of microfluidic device fabrication, with broad applications in both industrial and research settings.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.