微流体元表面:电磁波工程的新领域

Jin Qin, Shibin Jiang, Shibin Li, Shaowei He, Weiming Zhu
{"title":"微流体元表面:电磁波工程的新领域","authors":"Jin Qin,&nbsp;Shibin Jiang,&nbsp;Shibin Li,&nbsp;Shaowei He,&nbsp;Weiming Zhu","doi":"10.1002/apxr.202400059","DOIUrl":null,"url":null,"abstract":"<p>Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta-molecules with specific geometries and periodicities. In the context of microfluidic metasurfaces, optical properties can be dynamically modulated by altering either the geometric structure of liquid meta-molecules or the refractive index of the liquid medium. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. These properties not only establish a cutting-edge research area but also broaden the scope of applications for active metasurface devices. Additionally, the integration of metasurfaces within microfluidic systems has led to novel functionalities, including enhanced particle manipulation and sensor technologies. Compared to conventional solid-material-based metasurfaces, microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as electromagnetic absorption, optical sensing, holographic displays, and tunable optical meta-devices like flat lenses and polarizers. This review provides insights into the characteristics, modulation techniques, and potential applications of microfluidic metasurfaces, illuminating both the current research landscape and promising avenues for further explorations.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400059","citationCount":"0","resultStr":"{\"title\":\"Microfluidic Metasurfaces: A New Frontier in Electromagnetic Wave Engineering\",\"authors\":\"Jin Qin,&nbsp;Shibin Jiang,&nbsp;Shibin Li,&nbsp;Shaowei He,&nbsp;Weiming Zhu\",\"doi\":\"10.1002/apxr.202400059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta-molecules with specific geometries and periodicities. In the context of microfluidic metasurfaces, optical properties can be dynamically modulated by altering either the geometric structure of liquid meta-molecules or the refractive index of the liquid medium. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. These properties not only establish a cutting-edge research area but also broaden the scope of applications for active metasurface devices. Additionally, the integration of metasurfaces within microfluidic systems has led to novel functionalities, including enhanced particle manipulation and sensor technologies. Compared to conventional solid-material-based metasurfaces, microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as electromagnetic absorption, optical sensing, holographic displays, and tunable optical meta-devices like flat lenses and polarizers. This review provides insights into the characteristics, modulation techniques, and potential applications of microfluidic metasurfaces, illuminating both the current research landscape and promising avenues for further explorations.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"3 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400059\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

元表面作为二维人造电磁材料,通过控制电磁波的振幅、相位和偏振,在操纵电磁波方面发挥着举足轻重的作用。实现这种控制需要设计具有特定几何形状和周期性的亚波长元分子。在微流体元表面方面,可以通过改变液体元分子的几何结构或液体介质的折射率来动态调节光学特性。利用液体材料的流动性,微流体元表面在可重构性和灵活性方面表现出卓越的性能。这些特性不仅开辟了一个前沿研究领域,而且拓宽了有源元表面器件的应用范围。此外,将元表面集成到微流体系统中还带来了新的功能,包括增强粒子操纵和传感器技术。与传统的基于固体材料的元表面相比,微流体元表面提供了更大的设计自由度,使其在电磁吸收、光学传感、全息显示以及平面透镜和偏振镜等可调光学元器件等多个领域具有优势。这篇综述深入探讨了微流体元表面的特性、调制技术和潜在应用,阐明了当前的研究现状和进一步探索的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microfluidic Metasurfaces: A New Frontier in Electromagnetic Wave Engineering

Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta-molecules with specific geometries and periodicities. In the context of microfluidic metasurfaces, optical properties can be dynamically modulated by altering either the geometric structure of liquid meta-molecules or the refractive index of the liquid medium. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. These properties not only establish a cutting-edge research area but also broaden the scope of applications for active metasurface devices. Additionally, the integration of metasurfaces within microfluidic systems has led to novel functionalities, including enhanced particle manipulation and sensor technologies. Compared to conventional solid-material-based metasurfaces, microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as electromagnetic absorption, optical sensing, holographic displays, and tunable optical meta-devices like flat lenses and polarizers. This review provides insights into the characteristics, modulation techniques, and potential applications of microfluidic metasurfaces, illuminating both the current research landscape and promising avenues for further explorations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological Insulator Nanowires Made by AFM Nanopatterning: Fabrication Process and Ultra Low-Temperature Transport Properties (Adv. Phys. Res. 12/2024) Masthead (Adv. Phys. Res. 12/2024) Epithelial Folding Through Local Degradation of an Elastic Basement Membrane Plate Observation of Thermally Induced Piezomagnetic Switching in Cu2OSeO3 Polymorph Synthesized under High-Pressure (Adv. Phys. Res. 11/2024) Exploring Green Fluorescent Protein Brownian Motion: Temperature and Concentration Dependencies Through Luminescence Thermometry (Adv. Phys. Res. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1