脱水界面膜电解槽中的场增强型一氧化碳电还原

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2024-11-18 DOI:10.1016/j.chempr.2024.10.019
Wenhao Ren, Huanlei Zhang, Miyeon Chang, Nanjun Chen, Wenchao Ma, Jun Gu, Meng Lin, Xile Hu
{"title":"脱水界面膜电解槽中的场增强型一氧化碳电还原","authors":"Wenhao Ren, Huanlei Zhang, Miyeon Chang, Nanjun Chen, Wenchao Ma, Jun Gu, Meng Lin, Xile Hu","doi":"10.1016/j.chempr.2024.10.019","DOIUrl":null,"url":null,"abstract":"Zero-gap membrane electrode assembly (MEA) CO electrolyzer stands as a promising technology for circular carbon economy. However, current CO electrolyzers are energetically inefficient when operating at ampere-level current densities. Here, by analyzing the performance discrepancies between MEA and flow cells, we identify the depletion of K<sup>+</sup> and water at the cathode as the main contributor to the low performance of MEA CO electrolyzers. This is attributed to the unique cathodic interface in catholyte-free MEA, where there is no aqueous electrolyte to maintain the three-phase interface. Through the development of needle-array catalysts with intensified electric fields (EFs) at their tips, we are able to concentrate the limited K<sup>+</sup> cations onto the tips of the cathode, while simultaneously facilitating water uptake via electro-osmosis. We construct an MEA CO electrolyzer that achieves a large current density of 2,500 mA cm<sup>−2</sup> at a voltage of only 2.7 V.","PeriodicalId":268,"journal":{"name":"Chem","volume":"36 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field-enhanced CO electroreduction in membrane electrolyzers at a dehydrated interface\",\"authors\":\"Wenhao Ren, Huanlei Zhang, Miyeon Chang, Nanjun Chen, Wenchao Ma, Jun Gu, Meng Lin, Xile Hu\",\"doi\":\"10.1016/j.chempr.2024.10.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero-gap membrane electrode assembly (MEA) CO electrolyzer stands as a promising technology for circular carbon economy. However, current CO electrolyzers are energetically inefficient when operating at ampere-level current densities. Here, by analyzing the performance discrepancies between MEA and flow cells, we identify the depletion of K<sup>+</sup> and water at the cathode as the main contributor to the low performance of MEA CO electrolyzers. This is attributed to the unique cathodic interface in catholyte-free MEA, where there is no aqueous electrolyte to maintain the three-phase interface. Through the development of needle-array catalysts with intensified electric fields (EFs) at their tips, we are able to concentrate the limited K<sup>+</sup> cations onto the tips of the cathode, while simultaneously facilitating water uptake via electro-osmosis. We construct an MEA CO electrolyzer that achieves a large current density of 2,500 mA cm<sup>−2</sup> at a voltage of only 2.7 V.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2024.10.019\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.10.019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

零间隙膜电极组件(MEA)一氧化碳电解槽是一种很有前途的循环碳经济技术。然而,目前的二氧化碳电解槽在安培级电流密度下运行时能量效率较低。在这里,通过分析 MEA 和流动电池之间的性能差异,我们发现阴极的 K+ 和水耗尽是导致 MEA CO 电解槽性能低下的主要原因。这归因于无阴极电解质 MEA 中独特的阴极界面,即没有水电解质来维持三相界面。通过开发针状阵列催化剂,并在其顶端加强电场 (EF),我们能够将有限的 K+ 阳离子集中到阴极顶端,同时通过电渗透促进水的吸收。我们构建的 MEA CO 电解槽在电压仅为 2.7 V 的情况下可达到 2,500 mA cm-2 的大电流密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Field-enhanced CO electroreduction in membrane electrolyzers at a dehydrated interface
Zero-gap membrane electrode assembly (MEA) CO electrolyzer stands as a promising technology for circular carbon economy. However, current CO electrolyzers are energetically inefficient when operating at ampere-level current densities. Here, by analyzing the performance discrepancies between MEA and flow cells, we identify the depletion of K+ and water at the cathode as the main contributor to the low performance of MEA CO electrolyzers. This is attributed to the unique cathodic interface in catholyte-free MEA, where there is no aqueous electrolyte to maintain the three-phase interface. Through the development of needle-array catalysts with intensified electric fields (EFs) at their tips, we are able to concentrate the limited K+ cations onto the tips of the cathode, while simultaneously facilitating water uptake via electro-osmosis. We construct an MEA CO electrolyzer that achieves a large current density of 2,500 mA cm−2 at a voltage of only 2.7 V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
Engineering biotic-abiotic hybrid systems for solar-to-chemical conversion Field-enhanced CO electroreduction in membrane electrolyzers at a dehydrated interface In this issue Inherently chiral resorcinarene cavitands through ionic catalyst-controlled cross-coupling Steric-confinement Rh2/MoS2 dual-atom catalyst directionally modulating adsorption configuration of ester group to boost ethanol synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1