{"title":"瑞典北部亚北极永久冻土泥炭地热卡斯特池塘的形态和动态变化","authors":"Fabian Seemann, A. Britta K. Sannel","doi":"10.1002/esp.6021","DOIUrl":null,"url":null,"abstract":"Rapid climatic changes cause permafrost to thaw, initiating thermokarst landforms such as lakes and ponds. These waterbodies cover large extents of the northern circumpolar permafrost region and are significant sources of greenhouse gases. For the assessment of current and potential future waterbody development, continuous monitoring and analyses of the driving factors are required. In Dávvavuopmi, a permafrost peatland located in the sporadic permafrost zone of northern Sweden, high‐resolution imagery of the first two decades of the 21st century is available. This study combined field, GIS and statistical methods to explain spatiotemporal pond dynamics by investigating pond morphology and regional climate characteristics. Erosion affected 42% of the shorelines, and the erosion intensity was significantly correlated with the height and slope of bluffs facing the waterbodies. Along some sections, active erosion was causing shoreline retreat, but the dominant trend in this landscape was pond drainage and terrestrialisation/fen vegetation ingrowth. Between 2003 and 2021 the thermokarst pond area and number decreased by 6%/decade and 27%/decade, respectively. Inter‐ and intra‐annual climatic parameters could not be directly linked to thermokarst pond dynamics. Instead, the climate conditions (MAAT/snow depth) control permafrost degradation, causing enhanced hydrological connectivity in the landscape, which drives the pond drainage trend.","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"76 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphology and dynamics of thermokarst ponds in a subarctic permafrost peatland, northern Sweden\",\"authors\":\"Fabian Seemann, A. Britta K. Sannel\",\"doi\":\"10.1002/esp.6021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid climatic changes cause permafrost to thaw, initiating thermokarst landforms such as lakes and ponds. These waterbodies cover large extents of the northern circumpolar permafrost region and are significant sources of greenhouse gases. For the assessment of current and potential future waterbody development, continuous monitoring and analyses of the driving factors are required. In Dávvavuopmi, a permafrost peatland located in the sporadic permafrost zone of northern Sweden, high‐resolution imagery of the first two decades of the 21st century is available. This study combined field, GIS and statistical methods to explain spatiotemporal pond dynamics by investigating pond morphology and regional climate characteristics. Erosion affected 42% of the shorelines, and the erosion intensity was significantly correlated with the height and slope of bluffs facing the waterbodies. Along some sections, active erosion was causing shoreline retreat, but the dominant trend in this landscape was pond drainage and terrestrialisation/fen vegetation ingrowth. Between 2003 and 2021 the thermokarst pond area and number decreased by 6%/decade and 27%/decade, respectively. Inter‐ and intra‐annual climatic parameters could not be directly linked to thermokarst pond dynamics. Instead, the climate conditions (MAAT/snow depth) control permafrost degradation, causing enhanced hydrological connectivity in the landscape, which drives the pond drainage trend.\",\"PeriodicalId\":11408,\"journal\":{\"name\":\"Earth Surface Processes and Landforms\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Surface Processes and Landforms\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/esp.6021\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/esp.6021","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Morphology and dynamics of thermokarst ponds in a subarctic permafrost peatland, northern Sweden
Rapid climatic changes cause permafrost to thaw, initiating thermokarst landforms such as lakes and ponds. These waterbodies cover large extents of the northern circumpolar permafrost region and are significant sources of greenhouse gases. For the assessment of current and potential future waterbody development, continuous monitoring and analyses of the driving factors are required. In Dávvavuopmi, a permafrost peatland located in the sporadic permafrost zone of northern Sweden, high‐resolution imagery of the first two decades of the 21st century is available. This study combined field, GIS and statistical methods to explain spatiotemporal pond dynamics by investigating pond morphology and regional climate characteristics. Erosion affected 42% of the shorelines, and the erosion intensity was significantly correlated with the height and slope of bluffs facing the waterbodies. Along some sections, active erosion was causing shoreline retreat, but the dominant trend in this landscape was pond drainage and terrestrialisation/fen vegetation ingrowth. Between 2003 and 2021 the thermokarst pond area and number decreased by 6%/decade and 27%/decade, respectively. Inter‐ and intra‐annual climatic parameters could not be directly linked to thermokarst pond dynamics. Instead, the climate conditions (MAAT/snow depth) control permafrost degradation, causing enhanced hydrological connectivity in the landscape, which drives the pond drainage trend.
期刊介绍:
Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with:
the interactions between surface processes and landforms and landscapes;
that lead to physical, chemical and biological changes; and which in turn create;
current landscapes and the geological record of past landscapes.
Its focus is core to both physical geographical and geological communities, and also the wider geosciences