{"title":"在 U-net 分割结果的指导下,使用基于 Resnet50 的双分支模型对超声波图像进行分类的研究。","authors":"Xu Yang, Shuo'ou Qu, Zhilin Wang, Lingxiao Li, Xiaofeng An, Zhibin Cong","doi":"10.1186/s12880-024-01486-z","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the incidence of nodular thyroid diseases has been increasing annually. Ultrasonography has become a routine diagnostic tool for thyroid nodules due to its high real-time capabilities and low invasiveness. However, thyroid images obtained from current ultrasound tests often have low resolution and are plagued by significant noise interference. Regional differences in medical conditions and varying levels of physician experience can impact the accuracy and efficiency of diagnostic results. With the advancement of deep learning technology, deep learning models are used to identify whether a nodule in a thyroid ultrasound image is benign or malignant. This helps to close the gap between doctors' experience and equipment differences, improving the accuracy of the initial diagnosis of thyroid nodules. To cope with the problem that thyroid ultrasound images contain complex background and noise as well as poorly defined local features. in this paper, we first construct an improved ResNet50 classification model that uses a two-branch input and incorporates a global attention lightening module. This model is used to improve the accuracy of benign and malignant nodule classification in thyroid ultrasound images and to reduce the computational effort due to the two-branch structure.We constructed a U-net segmentation model incorporating our proposed ACR module, which uses hollow convolution with different dilation rates to capture multi-scale contextual information for feature extraction of nodules in thyroid ultrasound images and uses the results of the segmentation task as an auxiliary branch for the classification task to guide the classification model to focus on the lesion region more efficiently in the case of weak local features. The classification model is guided to focus on the lesion region more efficiently, and the classification and segmentation sub-networks are respectively improved specifically for this study, which is used to improve the accuracy of classifying the benign and malignant nature of the nodules in thyroid ultrasound images. The experimental results show that the four evaluation metrics of accuracy, precision, recall, and f1 of the improved model are 96.01%, 93.3%, 98.8%, and 96.0%, respectively. The improvements were 5.7%, 1.6%, 13.1%, and 7.4%, respectively, compared with the baseline classification model.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"314"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575176/pdf/","citationCount":"0","resultStr":"{\"title\":\"The study on ultrasound image classification using a dual-branch model based on Resnet50 guided by U-net segmentation results.\",\"authors\":\"Xu Yang, Shuo'ou Qu, Zhilin Wang, Lingxiao Li, Xiaofeng An, Zhibin Cong\",\"doi\":\"10.1186/s12880-024-01486-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the incidence of nodular thyroid diseases has been increasing annually. Ultrasonography has become a routine diagnostic tool for thyroid nodules due to its high real-time capabilities and low invasiveness. However, thyroid images obtained from current ultrasound tests often have low resolution and are plagued by significant noise interference. Regional differences in medical conditions and varying levels of physician experience can impact the accuracy and efficiency of diagnostic results. With the advancement of deep learning technology, deep learning models are used to identify whether a nodule in a thyroid ultrasound image is benign or malignant. This helps to close the gap between doctors' experience and equipment differences, improving the accuracy of the initial diagnosis of thyroid nodules. To cope with the problem that thyroid ultrasound images contain complex background and noise as well as poorly defined local features. in this paper, we first construct an improved ResNet50 classification model that uses a two-branch input and incorporates a global attention lightening module. This model is used to improve the accuracy of benign and malignant nodule classification in thyroid ultrasound images and to reduce the computational effort due to the two-branch structure.We constructed a U-net segmentation model incorporating our proposed ACR module, which uses hollow convolution with different dilation rates to capture multi-scale contextual information for feature extraction of nodules in thyroid ultrasound images and uses the results of the segmentation task as an auxiliary branch for the classification task to guide the classification model to focus on the lesion region more efficiently in the case of weak local features. The classification model is guided to focus on the lesion region more efficiently, and the classification and segmentation sub-networks are respectively improved specifically for this study, which is used to improve the accuracy of classifying the benign and malignant nature of the nodules in thyroid ultrasound images. The experimental results show that the four evaluation metrics of accuracy, precision, recall, and f1 of the improved model are 96.01%, 93.3%, 98.8%, and 96.0%, respectively. The improvements were 5.7%, 1.6%, 13.1%, and 7.4%, respectively, compared with the baseline classification model.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"24 1\",\"pages\":\"314\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-024-01486-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01486-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
近年来,甲状腺结节性疾病的发病率逐年上升。超声波检查因其实时性高、创伤小而成为甲状腺结节的常规诊断工具。然而,目前的超声检测所获得的甲状腺图像分辨率往往较低,且存在明显的噪声干扰。医疗条件的地区差异和医生经验水平的不同都会影响诊断结果的准确性和效率。随着深度学习技术的发展,深度学习模型可用于识别甲状腺超声图像中的结节是良性还是恶性。这有助于缩小医生经验与设备差异之间的差距,提高甲状腺结节初步诊断的准确性。针对甲状腺超声图像包含复杂背景和噪声以及局部特征不明确的问题,本文首先构建了一个改进的 ResNet50 分类模型,该模型使用双分支输入,并结合了全局注意力减弱模块。该模型用于提高甲状腺超声图像中良性和恶性结节分类的准确性,并减少双分支结构带来的计算量。我们构建了一个 U 网分割模型,其中包含了我们提出的 ACR 模块,该模块使用不同扩张率的空心卷积来捕捉甲状腺超声图像中结节的多尺度上下文信息,用于特征提取,并将分割任务的结果作为分类任务的辅助分支,在局部特征较弱的情况下引导分类模型更有效地聚焦于病变区域。在引导分类模型更有效地关注病变区域的基础上,分别对分类子网络和分割子网络进行了专门改进,用于提高甲状腺超声图像中结节良恶性分类的准确性。实验结果表明,改进模型的准确率、精确度、召回率和 f1 四个评价指标分别为 96.01%、93.3%、98.8% 和 96.0%。与基线分类模型相比,分别提高了 5.7%、1.6%、13.1% 和 7.4%。
The study on ultrasound image classification using a dual-branch model based on Resnet50 guided by U-net segmentation results.
In recent years, the incidence of nodular thyroid diseases has been increasing annually. Ultrasonography has become a routine diagnostic tool for thyroid nodules due to its high real-time capabilities and low invasiveness. However, thyroid images obtained from current ultrasound tests often have low resolution and are plagued by significant noise interference. Regional differences in medical conditions and varying levels of physician experience can impact the accuracy and efficiency of diagnostic results. With the advancement of deep learning technology, deep learning models are used to identify whether a nodule in a thyroid ultrasound image is benign or malignant. This helps to close the gap between doctors' experience and equipment differences, improving the accuracy of the initial diagnosis of thyroid nodules. To cope with the problem that thyroid ultrasound images contain complex background and noise as well as poorly defined local features. in this paper, we first construct an improved ResNet50 classification model that uses a two-branch input and incorporates a global attention lightening module. This model is used to improve the accuracy of benign and malignant nodule classification in thyroid ultrasound images and to reduce the computational effort due to the two-branch structure.We constructed a U-net segmentation model incorporating our proposed ACR module, which uses hollow convolution with different dilation rates to capture multi-scale contextual information for feature extraction of nodules in thyroid ultrasound images and uses the results of the segmentation task as an auxiliary branch for the classification task to guide the classification model to focus on the lesion region more efficiently in the case of weak local features. The classification model is guided to focus on the lesion region more efficiently, and the classification and segmentation sub-networks are respectively improved specifically for this study, which is used to improve the accuracy of classifying the benign and malignant nature of the nodules in thyroid ultrasound images. The experimental results show that the four evaluation metrics of accuracy, precision, recall, and f1 of the improved model are 96.01%, 93.3%, 98.8%, and 96.0%, respectively. The improvements were 5.7%, 1.6%, 13.1%, and 7.4%, respectively, compared with the baseline classification model.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.