通过 MnOx 上高价位 Ir 单原子的直接 O─O 耦合打破双功能氧电催化的相互制约。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-19 DOI:10.1002/adma.202412950
Ziyi Yang, Fayuan Lai, Qianjiang Mao, Chong Liu, Shengjie Peng, Xiangfeng Liu, Tianran Zhang
{"title":"通过 MnOx 上高价位 Ir 单原子的直接 O─O 耦合打破双功能氧电催化的相互制约。","authors":"Ziyi Yang, Fayuan Lai, Qianjiang Mao, Chong Liu, Shengjie Peng, Xiangfeng Liu, Tianran Zhang","doi":"10.1002/adma.202412950","DOIUrl":null,"url":null,"abstract":"<p><p>Insufficient bifunctional activity of electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the major obstruction to the application of rechargeable metal-air batteries. The primary reason is the mutual constraint of ORR and OER mechanism, involving the same oxygen-containing intermediates and demonstrating the scaling limitations of the adsorption energies. Herein, it is reported a high-valence Ir single atom anchored on manganese oxide (Ir<sub>SA</sub>-MnO<sub>x</sub>) bifunctional catalyst showing independent pathways for ORR and OER, i.e., associated 4e<sup>-</sup> pathway on high-valence Ir site for ORR and a novel chemical-activated concerted mechanism for OER, where a distinct spontaneous chemical activation process triggers direct O─O coupling. The Ir<sub>SA</sub>-MnO<sub>x</sub> therefore delivers outstanding bifunctional activities with remarkably low potential difference (0.635 V) between OER potential at 10 mA cm<sup>-2</sup> and ORR half-wave potential in alkaline solution. This work breaks the scaling limitations and provides a new avenue to design efficient and multifunctional electrocatalysts.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2412950"},"PeriodicalIF":27.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking the Mutual-Constraint of Bifunctional Oxygen Electrocatalysis via Direct O─O Coupling on High-Valence Ir Single-Atom on MnO<sub>x</sub>.\",\"authors\":\"Ziyi Yang, Fayuan Lai, Qianjiang Mao, Chong Liu, Shengjie Peng, Xiangfeng Liu, Tianran Zhang\",\"doi\":\"10.1002/adma.202412950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insufficient bifunctional activity of electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the major obstruction to the application of rechargeable metal-air batteries. The primary reason is the mutual constraint of ORR and OER mechanism, involving the same oxygen-containing intermediates and demonstrating the scaling limitations of the adsorption energies. Herein, it is reported a high-valence Ir single atom anchored on manganese oxide (Ir<sub>SA</sub>-MnO<sub>x</sub>) bifunctional catalyst showing independent pathways for ORR and OER, i.e., associated 4e<sup>-</sup> pathway on high-valence Ir site for ORR and a novel chemical-activated concerted mechanism for OER, where a distinct spontaneous chemical activation process triggers direct O─O coupling. The Ir<sub>SA</sub>-MnO<sub>x</sub> therefore delivers outstanding bifunctional activities with remarkably low potential difference (0.635 V) between OER potential at 10 mA cm<sup>-2</sup> and ORR half-wave potential in alkaline solution. This work breaks the scaling limitations and provides a new avenue to design efficient and multifunctional electrocatalysts.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2412950\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202412950\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412950","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧还原反应(ORR)和氧进化反应(OER)电催化剂的双功能活性不足是应用可充电金属-空气电池的主要障碍。其主要原因是氧还原反应和氧进化反应的机理相互制约,涉及相同的含氧中间产物,并显示出吸附能的比例限制。本文报告了一种锚定在氧化锰(IrSA-MnOx)上的高价Ir单原子双功能催化剂,它显示了ORR和OER的独立途径,即高价Ir位点上的相关4e-途径用于ORR,而新的化学激活协同机制用于OER,其中一个独特的自发化学激活过程引发了直接的O─O耦合。因此,IrSA-MnOx 具有出色的双功能活性,在碱性溶液中,10 mA cm-2 的 OER 电位与 ORR 半波电位之间的电位差(0.635 V)极低。这项工作打破了规模限制,为设计高效多功能电催化剂提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breaking the Mutual-Constraint of Bifunctional Oxygen Electrocatalysis via Direct O─O Coupling on High-Valence Ir Single-Atom on MnOx.

Insufficient bifunctional activity of electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the major obstruction to the application of rechargeable metal-air batteries. The primary reason is the mutual constraint of ORR and OER mechanism, involving the same oxygen-containing intermediates and demonstrating the scaling limitations of the adsorption energies. Herein, it is reported a high-valence Ir single atom anchored on manganese oxide (IrSA-MnOx) bifunctional catalyst showing independent pathways for ORR and OER, i.e., associated 4e- pathway on high-valence Ir site for ORR and a novel chemical-activated concerted mechanism for OER, where a distinct spontaneous chemical activation process triggers direct O─O coupling. The IrSA-MnOx therefore delivers outstanding bifunctional activities with remarkably low potential difference (0.635 V) between OER potential at 10 mA cm-2 and ORR half-wave potential in alkaline solution. This work breaks the scaling limitations and provides a new avenue to design efficient and multifunctional electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Cellulose Nanofiber-Supported Electrochemical Percolation of Capacitive Nanomaterials with 0D, 1D, and 2D Structures. Polymer-Formulated Nerve Growth Factor Shows Effective Therapeutic Efficacy for Cerebral Microinfarcts. Reticular Materials for Photocatalysis. Taming Prolonged Ionic Drift-Diffusion Dynamics for Brain-Inspired Computation. UNLEASH: Ultralow Nanocluster Loading of Pt via Electro-Acoustic Seasoning of Heterocatalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1