{"title":"拟南芥染色体组尺度的基因组组装和比较基因组分析揭示了其基因组进化的过程。","authors":"Bao-Zheng Chen, Zi-Jiang Yang, Ling Yang, Yi-Fan Zhu, Xu-Zhen Li, Lei Wang, Ye-Peng Zhou, Guang-Hui Zhang, Da-Wei Li, Yang Dong, Sheng-Chang Duan","doi":"10.3389/fpls.2024.1469375","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong><i>Codonopsis pilosula</i> is a significant plant in traditional Chinese medicine, valued for its edible and medicinal properties. However, the lack of available genomic resources has hindered further research.</p><p><strong>Methods: </strong>This study presents the first chromosome-scale genome assembly of <i>C. pilosula</i> using PacBio CLR reads and Hi-C scaffolding technology. Additionally, Ks analysis and syntenic depth analysis were performed to elucidate its evolutionary history.</p><p><strong>Results: </strong>The final assembly yielded a high-quality genome of 679.20 Mb, which was anchored to 8 pseudo-chromosomes with an anchoring rate of 96.5% and a scaffold N50 of 80.50 Mb. The genome assembly showed a high completeness of 97.6% based on Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis. Repetitive elements constituted approximately 76.8% of the genome, with long terminal repeat retrotransposons (LTRs) accounting for about 39.17%. Ks and syntenic depth analyses revealed that the polyploidization history of three platycodonoid clade species involved only the γ-WGT event. Karyotype evolutionary analysis identified an ancestral karyotype with 9 protochromosomes for the three platycodonoid clade species. Moreover, non-WGD genes, particularly those arising from tandem duplications, were found to contribute significantly to gene family expansion.</p><p><strong>Discussion: </strong>These findings provide essential insights into the genetic diversity and evolutionary biology of <i>C. pilosula</i>, aiding its conservation and sustainable use.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1469375"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570261/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chromosome-scale genome assembly of <i>Codonopsis pilosula</i> and comparative genomic analyses shed light on its genome evolution.\",\"authors\":\"Bao-Zheng Chen, Zi-Jiang Yang, Ling Yang, Yi-Fan Zhu, Xu-Zhen Li, Lei Wang, Ye-Peng Zhou, Guang-Hui Zhang, Da-Wei Li, Yang Dong, Sheng-Chang Duan\",\"doi\":\"10.3389/fpls.2024.1469375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong><i>Codonopsis pilosula</i> is a significant plant in traditional Chinese medicine, valued for its edible and medicinal properties. However, the lack of available genomic resources has hindered further research.</p><p><strong>Methods: </strong>This study presents the first chromosome-scale genome assembly of <i>C. pilosula</i> using PacBio CLR reads and Hi-C scaffolding technology. Additionally, Ks analysis and syntenic depth analysis were performed to elucidate its evolutionary history.</p><p><strong>Results: </strong>The final assembly yielded a high-quality genome of 679.20 Mb, which was anchored to 8 pseudo-chromosomes with an anchoring rate of 96.5% and a scaffold N50 of 80.50 Mb. The genome assembly showed a high completeness of 97.6% based on Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis. Repetitive elements constituted approximately 76.8% of the genome, with long terminal repeat retrotransposons (LTRs) accounting for about 39.17%. Ks and syntenic depth analyses revealed that the polyploidization history of three platycodonoid clade species involved only the γ-WGT event. Karyotype evolutionary analysis identified an ancestral karyotype with 9 protochromosomes for the three platycodonoid clade species. Moreover, non-WGD genes, particularly those arising from tandem duplications, were found to contribute significantly to gene family expansion.</p><p><strong>Discussion: </strong>These findings provide essential insights into the genetic diversity and evolutionary biology of <i>C. pilosula</i>, aiding its conservation and sustainable use.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":\"15 \",\"pages\":\"1469375\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2024.1469375\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1469375","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Chromosome-scale genome assembly of Codonopsis pilosula and comparative genomic analyses shed light on its genome evolution.
Introduction: Codonopsis pilosula is a significant plant in traditional Chinese medicine, valued for its edible and medicinal properties. However, the lack of available genomic resources has hindered further research.
Methods: This study presents the first chromosome-scale genome assembly of C. pilosula using PacBio CLR reads and Hi-C scaffolding technology. Additionally, Ks analysis and syntenic depth analysis were performed to elucidate its evolutionary history.
Results: The final assembly yielded a high-quality genome of 679.20 Mb, which was anchored to 8 pseudo-chromosomes with an anchoring rate of 96.5% and a scaffold N50 of 80.50 Mb. The genome assembly showed a high completeness of 97.6% based on Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis. Repetitive elements constituted approximately 76.8% of the genome, with long terminal repeat retrotransposons (LTRs) accounting for about 39.17%. Ks and syntenic depth analyses revealed that the polyploidization history of three platycodonoid clade species involved only the γ-WGT event. Karyotype evolutionary analysis identified an ancestral karyotype with 9 protochromosomes for the three platycodonoid clade species. Moreover, non-WGD genes, particularly those arising from tandem duplications, were found to contribute significantly to gene family expansion.
Discussion: These findings provide essential insights into the genetic diversity and evolutionary biology of C. pilosula, aiding its conservation and sustainable use.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.