Fuad Ameen, Norah Salem Almalki, Rawan Alshalan, Penislusshiyan Sakayanathan
{"title":"利用 Drimia indica 绿色合成硒纳米粒子:对抗癌和抗菌活性的启示。","authors":"Fuad Ameen, Norah Salem Almalki, Rawan Alshalan, Penislusshiyan Sakayanathan","doi":"10.1002/jemt.24726","DOIUrl":null,"url":null,"abstract":"<p><p>Selenium nanoparticles (SeNPs) have garnered significant interest as anticancer and antimicrobial agents. The aqueous extract of medicinal plant Drimia indica leaves (DI-LAE) was used to synthesize SeNPs (DI-SeNPs) that were extensively characterized by UV-visible absorbance, TEM, EDX, XRD, zeta potential measurements, and FTIR. DI-SeNPs exhibited dose-dependent toxicity against the human lung adenocarcinoma cell line (A549; IC<sub>50</sub> of 43.21 μg/mL). DI-SeNPs increased reactive oxygen species (ROS) generation in A549 cells. DI-SeNPs caused cell cycle arrest in the G2/M phase and increased DNA damage in A549 cells, ultimately driving these cells toward apoptosis. DI-SeNPs significantly increased p53 levels, decreasing Akt levels and elevating cleaved caspase 3 levels in A549 cells. Additionally, DI-SeNPs exhibited antimicrobial activity against various bacteria and fungi. These findings suggest that DI-SeNPs possess significant anticancer and antimicrobial properties, mediated through mechanisms involving ROS generation, cell cycle arrest, and apoptosis induction.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Synthesis of Selenium Nanoparticles Utilizing Drimia indica: Insights Into Anticancer and Antimicrobial Activities.\",\"authors\":\"Fuad Ameen, Norah Salem Almalki, Rawan Alshalan, Penislusshiyan Sakayanathan\",\"doi\":\"10.1002/jemt.24726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Selenium nanoparticles (SeNPs) have garnered significant interest as anticancer and antimicrobial agents. The aqueous extract of medicinal plant Drimia indica leaves (DI-LAE) was used to synthesize SeNPs (DI-SeNPs) that were extensively characterized by UV-visible absorbance, TEM, EDX, XRD, zeta potential measurements, and FTIR. DI-SeNPs exhibited dose-dependent toxicity against the human lung adenocarcinoma cell line (A549; IC<sub>50</sub> of 43.21 μg/mL). DI-SeNPs increased reactive oxygen species (ROS) generation in A549 cells. DI-SeNPs caused cell cycle arrest in the G2/M phase and increased DNA damage in A549 cells, ultimately driving these cells toward apoptosis. DI-SeNPs significantly increased p53 levels, decreasing Akt levels and elevating cleaved caspase 3 levels in A549 cells. Additionally, DI-SeNPs exhibited antimicrobial activity against various bacteria and fungi. These findings suggest that DI-SeNPs possess significant anticancer and antimicrobial properties, mediated through mechanisms involving ROS generation, cell cycle arrest, and apoptosis induction.</p>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24726\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24726","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Green Synthesis of Selenium Nanoparticles Utilizing Drimia indica: Insights Into Anticancer and Antimicrobial Activities.
Selenium nanoparticles (SeNPs) have garnered significant interest as anticancer and antimicrobial agents. The aqueous extract of medicinal plant Drimia indica leaves (DI-LAE) was used to synthesize SeNPs (DI-SeNPs) that were extensively characterized by UV-visible absorbance, TEM, EDX, XRD, zeta potential measurements, and FTIR. DI-SeNPs exhibited dose-dependent toxicity against the human lung adenocarcinoma cell line (A549; IC50 of 43.21 μg/mL). DI-SeNPs increased reactive oxygen species (ROS) generation in A549 cells. DI-SeNPs caused cell cycle arrest in the G2/M phase and increased DNA damage in A549 cells, ultimately driving these cells toward apoptosis. DI-SeNPs significantly increased p53 levels, decreasing Akt levels and elevating cleaved caspase 3 levels in A549 cells. Additionally, DI-SeNPs exhibited antimicrobial activity against various bacteria and fungi. These findings suggest that DI-SeNPs possess significant anticancer and antimicrobial properties, mediated through mechanisms involving ROS generation, cell cycle arrest, and apoptosis induction.
期刊介绍:
Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.