Nicolò Lago, Alessandra Galli, Sarah Tonello, Sara Ruiz-Molina, Saralea Marino, Stefano Casalini, Marco Buonomo, Simona Pisu, Marta Mas-Torrent, Giada Giorgi, Morten Gram Pedersen, Mario Bortolozzi, Andrea Cester
{"title":"电解质门控有机场效应晶体管的单细胞膜电位刺激和记录功能","authors":"Nicolò Lago, Alessandra Galli, Sarah Tonello, Sara Ruiz-Molina, Saralea Marino, Stefano Casalini, Marco Buonomo, Simona Pisu, Marta Mas-Torrent, Giada Giorgi, Morten Gram Pedersen, Mario Bortolozzi, Andrea Cester","doi":"10.1002/aelm.202400134","DOIUrl":null,"url":null,"abstract":"The reliable stimulation and recording of electrical activity in single cells by means of organic bio-electronics will be an important milestone in developing new low-cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single-cell membrane potential recording by means of a dual-gate electrolyte-gated organic field-effect transistors (EGOFET) employing 2,8-Difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET-based bio-sensors is reported, highlighting the importance of the device design and using an appropriate batch of measurements for the recording of the electrical activity of cells.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"80 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Cell Membrane Potential Stimulation and Recording by an Electrolyte-Gated Organic Field-Effect Transistor\",\"authors\":\"Nicolò Lago, Alessandra Galli, Sarah Tonello, Sara Ruiz-Molina, Saralea Marino, Stefano Casalini, Marco Buonomo, Simona Pisu, Marta Mas-Torrent, Giada Giorgi, Morten Gram Pedersen, Mario Bortolozzi, Andrea Cester\",\"doi\":\"10.1002/aelm.202400134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliable stimulation and recording of electrical activity in single cells by means of organic bio-electronics will be an important milestone in developing new low-cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single-cell membrane potential recording by means of a dual-gate electrolyte-gated organic field-effect transistors (EGOFET) employing 2,8-Difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET-based bio-sensors is reported, highlighting the importance of the device design and using an appropriate batch of measurements for the recording of the electrical activity of cells.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400134\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400134","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Single-Cell Membrane Potential Stimulation and Recording by an Electrolyte-Gated Organic Field-Effect Transistor
The reliable stimulation and recording of electrical activity in single cells by means of organic bio-electronics will be an important milestone in developing new low-cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single-cell membrane potential recording by means of a dual-gate electrolyte-gated organic field-effect transistors (EGOFET) employing 2,8-Difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET-based bio-sensors is reported, highlighting the importance of the device design and using an appropriate batch of measurements for the recording of the electrical activity of cells.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.