{"title":"中国山西泽州带垫层和软弱层岩石中滑坡形成的蠕变机理","authors":"Zhiqiang Yi, Jianhui Long, Wenhui Shi, Hongyan Yan, Jining Zhang, Wenjun Bi, Yuqi Jin","doi":"10.1007/s10064-024-04002-3","DOIUrl":null,"url":null,"abstract":"<div><p>Landslides formed in rock with bedding and weak layers threaten the environmental safety of the Yellow River Basin in China. Further study of the creep mechanism of such landslides will help to evaluate their stability. In this study, field investigation, data monitoring, basic parameter tests, and expansion pressure test are combined. The failure characteristics and mechanism of the Luoquan (LQ) landslide in Zezhou, Shanxi, China, under natural rainfall conditions are analyzed in detail. The creep deformation of the LQ landslide occurred continuously during the period of meteorological rainfall concentration. Natural rainfall was the main triggering factor of the long-term creep deformation of the LQ landslide. With increasing saturation degree and time of the slide zones, the creep deformation of the LQ landslide was caused by weakening of the shear strength and expansion of the slide zones, causing cracks in roads and houses built on surfaces. When the natural rainfall decreased, the weakening, softening, and expansion mechanism of the slide zones weakened. The stability of the LQ landslide increased, and the creep deformation gradually stopped. As of now, the creep deformation rate of the LQ landslide, currently increasing, is likely to develop into complete destabilization. Therefore, the on-site monitoring of the LQ landslide needs to be continued.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creep mechanism of landslide formation in rock with bedding and weak layers in Zezhou, Shanxi, China\",\"authors\":\"Zhiqiang Yi, Jianhui Long, Wenhui Shi, Hongyan Yan, Jining Zhang, Wenjun Bi, Yuqi Jin\",\"doi\":\"10.1007/s10064-024-04002-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Landslides formed in rock with bedding and weak layers threaten the environmental safety of the Yellow River Basin in China. Further study of the creep mechanism of such landslides will help to evaluate their stability. In this study, field investigation, data monitoring, basic parameter tests, and expansion pressure test are combined. The failure characteristics and mechanism of the Luoquan (LQ) landslide in Zezhou, Shanxi, China, under natural rainfall conditions are analyzed in detail. The creep deformation of the LQ landslide occurred continuously during the period of meteorological rainfall concentration. Natural rainfall was the main triggering factor of the long-term creep deformation of the LQ landslide. With increasing saturation degree and time of the slide zones, the creep deformation of the LQ landslide was caused by weakening of the shear strength and expansion of the slide zones, causing cracks in roads and houses built on surfaces. When the natural rainfall decreased, the weakening, softening, and expansion mechanism of the slide zones weakened. The stability of the LQ landslide increased, and the creep deformation gradually stopped. As of now, the creep deformation rate of the LQ landslide, currently increasing, is likely to develop into complete destabilization. Therefore, the on-site monitoring of the LQ landslide needs to be continued.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-04002-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04002-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Creep mechanism of landslide formation in rock with bedding and weak layers in Zezhou, Shanxi, China
Landslides formed in rock with bedding and weak layers threaten the environmental safety of the Yellow River Basin in China. Further study of the creep mechanism of such landslides will help to evaluate their stability. In this study, field investigation, data monitoring, basic parameter tests, and expansion pressure test are combined. The failure characteristics and mechanism of the Luoquan (LQ) landslide in Zezhou, Shanxi, China, under natural rainfall conditions are analyzed in detail. The creep deformation of the LQ landslide occurred continuously during the period of meteorological rainfall concentration. Natural rainfall was the main triggering factor of the long-term creep deformation of the LQ landslide. With increasing saturation degree and time of the slide zones, the creep deformation of the LQ landslide was caused by weakening of the shear strength and expansion of the slide zones, causing cracks in roads and houses built on surfaces. When the natural rainfall decreased, the weakening, softening, and expansion mechanism of the slide zones weakened. The stability of the LQ landslide increased, and the creep deformation gradually stopped. As of now, the creep deformation rate of the LQ landslide, currently increasing, is likely to develop into complete destabilization. Therefore, the on-site monitoring of the LQ landslide needs to be continued.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.