Sushmeeka Nair Prathaban, Nor Syafirah Zambry, Fatimah Ibrahim, Mohd Yazed Ahmad, Nurul Fauzani Jamaluddin, Tay Sun Tee
{"title":"用于败血症检测的未来电极:从植物废料中提取的数字微流控生物传感器","authors":"Sushmeeka Nair Prathaban, Nor Syafirah Zambry, Fatimah Ibrahim, Mohd Yazed Ahmad, Nurul Fauzani Jamaluddin, Tay Sun Tee","doi":"10.1007/s10404-024-02771-7","DOIUrl":null,"url":null,"abstract":"<div><p>Sepsis is a major global health concern, necessitating timely and accurate diagnosis for effective patient management. The standard diagnostic methods used to diagnose sepsis often face challenges in sensitivity and rapidity, prompting the exploration of innovative solutions such as microfluidic-based biosensors. Advances in digital microfluidic technology have garnered more interest as a promising approach in biomedical applications due to its unique ability to manipulate discrete fluid droplets on the surface, offering greater flexibility and precision. This paper presents the recent advancements of microfluidic and biosensor technology in sepsis diagnosis over the past ten years (2014–2024), highlighting their potential to revolutionize healthcare. Additionally, the integration of future electrode biosensor materials derived from plant waste is discussed, showcasing their eco-friendly and sustainable attributes in enhancing biosensor performance. Finally, this paper highlights a positive outlook on the future potential of digital microfluidic-based biosensors with green electrode nanomaterials for sepsis diagnosis, making them ideal for point-of-care applications addressing critical challenges in healthcare industries.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02771-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Future electrodes for sepsis detection: digital microfluidic biosensors from plant waste\",\"authors\":\"Sushmeeka Nair Prathaban, Nor Syafirah Zambry, Fatimah Ibrahim, Mohd Yazed Ahmad, Nurul Fauzani Jamaluddin, Tay Sun Tee\",\"doi\":\"10.1007/s10404-024-02771-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sepsis is a major global health concern, necessitating timely and accurate diagnosis for effective patient management. The standard diagnostic methods used to diagnose sepsis often face challenges in sensitivity and rapidity, prompting the exploration of innovative solutions such as microfluidic-based biosensors. Advances in digital microfluidic technology have garnered more interest as a promising approach in biomedical applications due to its unique ability to manipulate discrete fluid droplets on the surface, offering greater flexibility and precision. This paper presents the recent advancements of microfluidic and biosensor technology in sepsis diagnosis over the past ten years (2014–2024), highlighting their potential to revolutionize healthcare. Additionally, the integration of future electrode biosensor materials derived from plant waste is discussed, showcasing their eco-friendly and sustainable attributes in enhancing biosensor performance. Finally, this paper highlights a positive outlook on the future potential of digital microfluidic-based biosensors with green electrode nanomaterials for sepsis diagnosis, making them ideal for point-of-care applications addressing critical challenges in healthcare industries.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"28 12\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10404-024-02771-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02771-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02771-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Future electrodes for sepsis detection: digital microfluidic biosensors from plant waste
Sepsis is a major global health concern, necessitating timely and accurate diagnosis for effective patient management. The standard diagnostic methods used to diagnose sepsis often face challenges in sensitivity and rapidity, prompting the exploration of innovative solutions such as microfluidic-based biosensors. Advances in digital microfluidic technology have garnered more interest as a promising approach in biomedical applications due to its unique ability to manipulate discrete fluid droplets on the surface, offering greater flexibility and precision. This paper presents the recent advancements of microfluidic and biosensor technology in sepsis diagnosis over the past ten years (2014–2024), highlighting their potential to revolutionize healthcare. Additionally, the integration of future electrode biosensor materials derived from plant waste is discussed, showcasing their eco-friendly and sustainable attributes in enhancing biosensor performance. Finally, this paper highlights a positive outlook on the future potential of digital microfluidic-based biosensors with green electrode nanomaterials for sepsis diagnosis, making them ideal for point-of-care applications addressing critical challenges in healthcare industries.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).