3DGSR: 利用三维高斯拼接进行隐式曲面重构

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2024-11-19 DOI:10.1145/3687952
Xiaoyang Lyu, Yang-Tian Sun, Yi-Hua Huang, Xiuzhe Wu, Ziyi Yang, Yilun Chen, Jiangmiao Pang, Xiaojuan Qi
{"title":"3DGSR: 利用三维高斯拼接进行隐式曲面重构","authors":"Xiaoyang Lyu, Yang-Tian Sun, Yi-Hua Huang, Xiuzhe Wu, Ziyi Yang, Yilun Chen, Jiangmiao Pang, Xiaojuan Qi","doi":"10.1145/3687952","DOIUrl":null,"url":null,"abstract":"In this paper, we present an implicit surface reconstruction method with 3D Gaussian Splatting (3DGS), namely 3DGSR, that allows for accurate 3D reconstruction with intricate details while inheriting the high efficiency and rendering quality of 3DGS. The key insight is to incorporate an implicit signed distance field (SDF) within 3D Gaussians for surface modeling, and to enable the alignment and joint optimization of both SDF and 3D Gaussians. To achieve this, we design coupling strategies that align and associate the SDF with 3D Gaussians, allowing for unified optimization and enforcing surface constraints on the 3D Gaussians. With alignment, optimizing the 3D Gaussians provides supervisory signals for SDF learning, enabling the reconstruction of intricate details. However, this only offers sparse supervisory signals to the SDF at locations occupied by Gaussians, which is insufficient for learning a continuous SDF. Then, to address this limitation, we incorporate volumetric rendering and align the rendered geometric attributes (depth, normal) with that derived from 3DGS. In sum, these two designs allow SDF and 3DGS to be aligned, jointly optimized, and mutually boosted. Our extensive experimental results demonstrate that our 3DGSR enables high-quality 3D surface reconstruction while preserving the efficiency and rendering quality of 3DGS. Besides, our method competes favorably with leading surface reconstruction techniques while offering a more efficient learning process and much better rendering qualities.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"176 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting\",\"authors\":\"Xiaoyang Lyu, Yang-Tian Sun, Yi-Hua Huang, Xiuzhe Wu, Ziyi Yang, Yilun Chen, Jiangmiao Pang, Xiaojuan Qi\",\"doi\":\"10.1145/3687952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an implicit surface reconstruction method with 3D Gaussian Splatting (3DGS), namely 3DGSR, that allows for accurate 3D reconstruction with intricate details while inheriting the high efficiency and rendering quality of 3DGS. The key insight is to incorporate an implicit signed distance field (SDF) within 3D Gaussians for surface modeling, and to enable the alignment and joint optimization of both SDF and 3D Gaussians. To achieve this, we design coupling strategies that align and associate the SDF with 3D Gaussians, allowing for unified optimization and enforcing surface constraints on the 3D Gaussians. With alignment, optimizing the 3D Gaussians provides supervisory signals for SDF learning, enabling the reconstruction of intricate details. However, this only offers sparse supervisory signals to the SDF at locations occupied by Gaussians, which is insufficient for learning a continuous SDF. Then, to address this limitation, we incorporate volumetric rendering and align the rendered geometric attributes (depth, normal) with that derived from 3DGS. In sum, these two designs allow SDF and 3DGS to be aligned, jointly optimized, and mutually boosted. Our extensive experimental results demonstrate that our 3DGSR enables high-quality 3D surface reconstruction while preserving the efficiency and rendering quality of 3DGS. Besides, our method competes favorably with leading surface reconstruction techniques while offering a more efficient learning process and much better rendering qualities.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"176 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3687952\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687952","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种采用三维高斯拼接(3DGS)的隐式曲面重建方法,即3DGSR,它在继承3DGS的高效率和渲染质量的同时,还能实现具有复杂细节的精确三维重建。其关键之处在于将隐式签名距离场(SDF)纳入三维高斯曲面建模,并实现 SDF 和三维高斯的对齐和联合优化。为此,我们设计了耦合策略,将 SDF 与三维高斯进行对齐和关联,从而实现统一优化,并对三维高斯执行曲面约束。通过对齐,优化三维高斯可为 SDF 学习提供监督信号,从而实现复杂细节的重建。然而,这只能在高斯占据的位置为 SDF 提供稀疏的监督信号,不足以学习连续的 SDF。然后,为了解决这一局限性,我们采用了体积渲染技术,并将渲染的几何属性(深度、法线)与 3DGS 得出的属性保持一致。总之,这两种设计使 SDF 和 3DGS 能够相互配合、共同优化和相互促进。大量的实验结果表明,我们的 3DGSR 可以实现高质量的三维表面重建,同时保持 3DGS 的效率和渲染质量。此外,我们的方法在提供更高效的学习过程和更好的渲染质量的同时,还能与领先的曲面重建技术相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting
In this paper, we present an implicit surface reconstruction method with 3D Gaussian Splatting (3DGS), namely 3DGSR, that allows for accurate 3D reconstruction with intricate details while inheriting the high efficiency and rendering quality of 3DGS. The key insight is to incorporate an implicit signed distance field (SDF) within 3D Gaussians for surface modeling, and to enable the alignment and joint optimization of both SDF and 3D Gaussians. To achieve this, we design coupling strategies that align and associate the SDF with 3D Gaussians, allowing for unified optimization and enforcing surface constraints on the 3D Gaussians. With alignment, optimizing the 3D Gaussians provides supervisory signals for SDF learning, enabling the reconstruction of intricate details. However, this only offers sparse supervisory signals to the SDF at locations occupied by Gaussians, which is insufficient for learning a continuous SDF. Then, to address this limitation, we incorporate volumetric rendering and align the rendered geometric attributes (depth, normal) with that derived from 3DGS. In sum, these two designs allow SDF and 3DGS to be aligned, jointly optimized, and mutually boosted. Our extensive experimental results demonstrate that our 3DGSR enables high-quality 3D surface reconstruction while preserving the efficiency and rendering quality of 3DGS. Besides, our method competes favorably with leading surface reconstruction techniques while offering a more efficient learning process and much better rendering qualities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
Direct Manipulation of Procedural Implicit Surfaces 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting Quark: Real-time, High-resolution, and General Neural View Synthesis Differentiable Owen Scrambling ELMO: Enhanced Real-time LiDAR Motion Capture through Upsampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1