Hajin Choi, Seokpyo Hong, Inwoo Ha, Nahyup Kang, Bochang Moon
{"title":"用于交互式渲染的交叉回归在线去噪神经技术","authors":"Hajin Choi, Seokpyo Hong, Inwoo Ha, Nahyup Kang, Bochang Moon","doi":"10.1145/3687938","DOIUrl":null,"url":null,"abstract":"Generating a rendered image sequence through Monte Carlo ray tracing is an appealing option when one aims to accurately simulate various lighting effects. Unfortunately, interactive rendering scenarios limit the allowable sample size for such sampling-based light transport algorithms, resulting in an unbiased but noisy image sequence. Image denoising has been widely adopted as a post-sampling process to convert such noisy image sequences into biased but temporally stable ones. The state-of-the-art strategy for interactive image denoising involves devising a deep neural network and training this network via supervised learning, i.e., optimizing the network parameters using training datasets that include an extensive set of image pairs (noisy and ground truth images). This paper adopts the prevalent approach for interactive image denoising, which relies on a neural network. However, instead of supervised learning, we propose a different learning strategy that trains our network parameters on the fly, i.e., updating them online using runtime image sequences. To achieve our denoising objective with online learning, we tailor local regression to a cross-regression form that can guide robust training of our denoising neural network. We demonstrate that our denoising framework effectively reduces noise in input image sequences while robustly preserving both geometric and non-geometric edges, without requiring the manual effort involved in preparing an external dataset.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"18 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Neural Denoising with Cross-Regression for Interactive Rendering\",\"authors\":\"Hajin Choi, Seokpyo Hong, Inwoo Ha, Nahyup Kang, Bochang Moon\",\"doi\":\"10.1145/3687938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating a rendered image sequence through Monte Carlo ray tracing is an appealing option when one aims to accurately simulate various lighting effects. Unfortunately, interactive rendering scenarios limit the allowable sample size for such sampling-based light transport algorithms, resulting in an unbiased but noisy image sequence. Image denoising has been widely adopted as a post-sampling process to convert such noisy image sequences into biased but temporally stable ones. The state-of-the-art strategy for interactive image denoising involves devising a deep neural network and training this network via supervised learning, i.e., optimizing the network parameters using training datasets that include an extensive set of image pairs (noisy and ground truth images). This paper adopts the prevalent approach for interactive image denoising, which relies on a neural network. However, instead of supervised learning, we propose a different learning strategy that trains our network parameters on the fly, i.e., updating them online using runtime image sequences. To achieve our denoising objective with online learning, we tailor local regression to a cross-regression form that can guide robust training of our denoising neural network. We demonstrate that our denoising framework effectively reduces noise in input image sequences while robustly preserving both geometric and non-geometric edges, without requiring the manual effort involved in preparing an external dataset.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3687938\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687938","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Online Neural Denoising with Cross-Regression for Interactive Rendering
Generating a rendered image sequence through Monte Carlo ray tracing is an appealing option when one aims to accurately simulate various lighting effects. Unfortunately, interactive rendering scenarios limit the allowable sample size for such sampling-based light transport algorithms, resulting in an unbiased but noisy image sequence. Image denoising has been widely adopted as a post-sampling process to convert such noisy image sequences into biased but temporally stable ones. The state-of-the-art strategy for interactive image denoising involves devising a deep neural network and training this network via supervised learning, i.e., optimizing the network parameters using training datasets that include an extensive set of image pairs (noisy and ground truth images). This paper adopts the prevalent approach for interactive image denoising, which relies on a neural network. However, instead of supervised learning, we propose a different learning strategy that trains our network parameters on the fly, i.e., updating them online using runtime image sequences. To achieve our denoising objective with online learning, we tailor local regression to a cross-regression form that can guide robust training of our denoising neural network. We demonstrate that our denoising framework effectively reduces noise in input image sequences while robustly preserving both geometric and non-geometric edges, without requiring the manual effort involved in preparing an external dataset.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.