马尾藻搁浅生物体上积累的塑料碎片是不同形式砷(V)和砷(III)的载体

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2024-11-19 DOI:10.1016/j.jhazmat.2024.136579
Ana.E. Pradas del Real, Delphine Vantelon, Charlotte Catrouillet, Imane Khatib, Rémi Tucoulou, Camille Rivard, Sebastian Schoeder, Julien. Gigault, Mélanie. Davranche
{"title":"马尾藻搁浅生物体上积累的塑料碎片是不同形式砷(V)和砷(III)的载体","authors":"Ana.E. Pradas del Real, Delphine Vantelon, Charlotte Catrouillet, Imane Khatib, Rémi Tucoulou, Camille Rivard, Sebastian Schoeder, Julien. Gigault, Mélanie. Davranche","doi":"10.1016/j.jhazmat.2024.136579","DOIUrl":null,"url":null,"abstract":"This work shows that the plastic debris accumulated along with stranded Sargassum biomass in Guadeloupe’s beaches contains different forms of arsenic. Results from synchrotron nano X-ray Fluorescence (nanoXRF) and nano X-ray Absorption Near Edge Structure (nanoXANES) show that arsenate (As(V) in a tetrahedral coordination) present in seawater is complexed in the algae cell walls in an octahedral As(V) form, which is subsequently reduced to As(III) within the algae. Inorganic As(III) is either excreted or may undergo methylation and/or binding to glutathione, which is then stored in the algal cells or excreted. The areas where As is colocalized with a variety of metals (Si, K, Ca, Fe, Ni Cu and Zn) may correspond with areas in which algae tissues remain adhered to the surface of the plastics. On the opposite, the areas in which As is found together with Ti or Cl may correspond with areas in which the algae has been decomposed or in which As has been adsorbed after being secreted by the algae. Results from this study should be taken into account to assess the ecotoxicological impacts of Sargassum biomass accumulated on beaches, as well as for the planning of its valorization. Plastics within the Sargassum biomass can act as vectors for arsenic, facilitating its transfer to other environmental compartments where the biomass is used or when it is ingested by various organisms. In a context of a growing problem of plastic pollution and a more and more frequent algae blooms, these results are particularly relevant.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"3 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plastic debris accumulated on Sargassum algae stranded biomass are vectors for different As(V) and As(III) forms\",\"authors\":\"Ana.E. Pradas del Real, Delphine Vantelon, Charlotte Catrouillet, Imane Khatib, Rémi Tucoulou, Camille Rivard, Sebastian Schoeder, Julien. Gigault, Mélanie. Davranche\",\"doi\":\"10.1016/j.jhazmat.2024.136579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work shows that the plastic debris accumulated along with stranded Sargassum biomass in Guadeloupe’s beaches contains different forms of arsenic. Results from synchrotron nano X-ray Fluorescence (nanoXRF) and nano X-ray Absorption Near Edge Structure (nanoXANES) show that arsenate (As(V) in a tetrahedral coordination) present in seawater is complexed in the algae cell walls in an octahedral As(V) form, which is subsequently reduced to As(III) within the algae. Inorganic As(III) is either excreted or may undergo methylation and/or binding to glutathione, which is then stored in the algal cells or excreted. The areas where As is colocalized with a variety of metals (Si, K, Ca, Fe, Ni Cu and Zn) may correspond with areas in which algae tissues remain adhered to the surface of the plastics. On the opposite, the areas in which As is found together with Ti or Cl may correspond with areas in which the algae has been decomposed or in which As has been adsorbed after being secreted by the algae. Results from this study should be taken into account to assess the ecotoxicological impacts of Sargassum biomass accumulated on beaches, as well as for the planning of its valorization. Plastics within the Sargassum biomass can act as vectors for arsenic, facilitating its transfer to other environmental compartments where the biomass is used or when it is ingested by various organisms. In a context of a growing problem of plastic pollution and a more and more frequent algae blooms, these results are particularly relevant.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136579\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136579","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

这项研究表明,瓜德罗普岛海滩上随搁浅马尾藻生物群一起堆积的塑料碎片含有不同形式的砷。同步辐射纳米 X 射线荧光(nanoXRF)和纳米 X 射线吸收近边缘结构(nanoXANES)的研究结果表明,海水中的砷酸盐(四面体配位的 As(V))以八面体 As(V) 的形式络合在马尾藻细胞壁中,随后在马尾藻体内还原成 As(III)。无机 As(III) 要么被排出体外,要么被甲基化和/或与谷胱甘肽结合,然后储存在藻类细胞中或被排出体外。砷与多种金属(Si、K、Ca、Fe、Ni、Cu 和 Zn)共聚的区域可能与藻类组织仍粘附在塑料表面的区域相对应。相反,As 与 Ti 或 Cl 同时出现的区域可能与藻类已经分解或藻类分泌 As 后被吸附的区域相对应。在评估马尾藻生物量对海滩生态毒理学的影响以及规划马尾藻生物量的价值时,应考虑本研究的结果。马尾藻生物体内的塑料可作为砷的载体,促进砷转移到使用生物体或各种生物摄入生物体的其他环境区划。在塑料污染问题日益严重、藻类繁殖日益频繁的背景下,这些结果尤为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plastic debris accumulated on Sargassum algae stranded biomass are vectors for different As(V) and As(III) forms
This work shows that the plastic debris accumulated along with stranded Sargassum biomass in Guadeloupe’s beaches contains different forms of arsenic. Results from synchrotron nano X-ray Fluorescence (nanoXRF) and nano X-ray Absorption Near Edge Structure (nanoXANES) show that arsenate (As(V) in a tetrahedral coordination) present in seawater is complexed in the algae cell walls in an octahedral As(V) form, which is subsequently reduced to As(III) within the algae. Inorganic As(III) is either excreted or may undergo methylation and/or binding to glutathione, which is then stored in the algal cells or excreted. The areas where As is colocalized with a variety of metals (Si, K, Ca, Fe, Ni Cu and Zn) may correspond with areas in which algae tissues remain adhered to the surface of the plastics. On the opposite, the areas in which As is found together with Ti or Cl may correspond with areas in which the algae has been decomposed or in which As has been adsorbed after being secreted by the algae. Results from this study should be taken into account to assess the ecotoxicological impacts of Sargassum biomass accumulated on beaches, as well as for the planning of its valorization. Plastics within the Sargassum biomass can act as vectors for arsenic, facilitating its transfer to other environmental compartments where the biomass is used or when it is ingested by various organisms. In a context of a growing problem of plastic pollution and a more and more frequent algae blooms, these results are particularly relevant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Unveiling the potential mobility and geochemical speciation of geogenic arsenic in the deep subsurface soil of the Tokyo metropolitan area Corrigendum to “Cobalt induces neurodegenerative damages through Pin1 inactivation in mice and human neuroglioma cells” [J Hazard Mater 419 (2021) 126378] Soil moisture and texture mediating the micro(nano)plastics absorption and growth of lettuce in natural soil conditions Female zebrafish are more affected than males under polystyrene microplastics exposure A core-shell structured crystalline@amorphous MnO2 with enhanced plasma catalytic degradation performance for Volatile Organic Sulfur Compounds and degradation mechanism exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1