Bin Hu, Barbara Etschmann, Denis Testemale, Weihua Liu, Qiushi Guan, Harald Müller, Joël Brugger
{"title":"热液中的钽","authors":"Bin Hu, Barbara Etschmann, Denis Testemale, Weihua Liu, Qiushi Guan, Harald Müller, Joël Brugger","doi":"10.1016/j.gca.2024.10.019","DOIUrl":null,"url":null,"abstract":"Understanding the behaviour of tantalum (Ta) in hydrothermal systems is pivotal for understanding its geochemical enrichment processes and economic extraction via hydrometallurgy. Yet, its behaviour in hydrothermal systems remains poorly characterised. This study investigates the coordination chemistry, speciation, and solubility of pentavalent Ta(V) in fluoride (F) − and chloride (Cl) −rich hydrothermal solutions up to 413 °C and 800 bar, utilising <ce:italic>in-situ</ce:italic> High Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy (HERFD-XAS). The results reveal the stability of high order fluoridotantalate complexes in fluoride-rich fluids solutions up to the highest investigated temperature, highlighting fluoride’s paramount role in enhancing Ta solubility through the formation of stable fluoridotantalate complexes in aqueous solutions. A transition from nonafluoridotantalate tetraanion (TaF<ce:inf loc=\"post\">9</ce:inf><ce:sup loc=\"post\">4−</ce:sup>) to heptafluoridotantalate dianion (TaF<ce:inf loc=\"post\">7</ce:inf><ce:sup loc=\"post\">2−</ce:sup>) complexes was observed as a function of temperature in solutions containing ≥1 <ce:italic>m</ce:italic> fluoride. Conversely, our findings indicate a negligible role for chloride in Ta complexation even in high Cl (∼6 <ce:italic>m</ce:italic>) aqueous solutions, suggesting that Ta chloride complexes do not contribute significantly to Ta transport in hydrothermal systems. Existing solubility data were reinterpreted based on an updated speciation model that integrates the <ce:italic>in-situ</ce:italic> XAS results. This confirms that Ta(OH)<ce:inf loc=\"post\">5</ce:inf>(aq) predominates in solutions containing <0.02 <ce:italic>m</ce:italic> fluoride; oxyfluoridotantalate anions such as [TaF<ce:inf loc=\"post\">3</ce:inf>(OH)<ce:inf loc=\"post\">3</ce:inf><ce:sup loc=\"post\">−</ce:sup>] dominate in solutions containing intermediate fluoride concentrations (0.02–1 <ce:italic>m</ce:italic>), and the fluoridotantalate anions [TaF<ce:inf loc=\"post\">9</ce:inf><ce:sup loc=\"post\">4−</ce:sup> to TaF<ce:inf loc=\"post\">7</ce:inf><ce:sup loc=\"post\">2−</ce:sup>] occur in more concentrated fluoride solutions (>1 <ce:italic>m</ce:italic>) at hydrothermal conditions (∼100–400 °C). Derived thermodynamic data for these species enable better understanding and geochemical modelling of Ta transport in hydrothermal fluids, highlighting the potential of F-rich fluids to transport significant amounts of Ta.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"19 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tantalum in hydrothermal fluids\",\"authors\":\"Bin Hu, Barbara Etschmann, Denis Testemale, Weihua Liu, Qiushi Guan, Harald Müller, Joël Brugger\",\"doi\":\"10.1016/j.gca.2024.10.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the behaviour of tantalum (Ta) in hydrothermal systems is pivotal for understanding its geochemical enrichment processes and economic extraction via hydrometallurgy. Yet, its behaviour in hydrothermal systems remains poorly characterised. This study investigates the coordination chemistry, speciation, and solubility of pentavalent Ta(V) in fluoride (F) − and chloride (Cl) −rich hydrothermal solutions up to 413 °C and 800 bar, utilising <ce:italic>in-situ</ce:italic> High Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy (HERFD-XAS). The results reveal the stability of high order fluoridotantalate complexes in fluoride-rich fluids solutions up to the highest investigated temperature, highlighting fluoride’s paramount role in enhancing Ta solubility through the formation of stable fluoridotantalate complexes in aqueous solutions. A transition from nonafluoridotantalate tetraanion (TaF<ce:inf loc=\\\"post\\\">9</ce:inf><ce:sup loc=\\\"post\\\">4−</ce:sup>) to heptafluoridotantalate dianion (TaF<ce:inf loc=\\\"post\\\">7</ce:inf><ce:sup loc=\\\"post\\\">2−</ce:sup>) complexes was observed as a function of temperature in solutions containing ≥1 <ce:italic>m</ce:italic> fluoride. Conversely, our findings indicate a negligible role for chloride in Ta complexation even in high Cl (∼6 <ce:italic>m</ce:italic>) aqueous solutions, suggesting that Ta chloride complexes do not contribute significantly to Ta transport in hydrothermal systems. Existing solubility data were reinterpreted based on an updated speciation model that integrates the <ce:italic>in-situ</ce:italic> XAS results. This confirms that Ta(OH)<ce:inf loc=\\\"post\\\">5</ce:inf>(aq) predominates in solutions containing <0.02 <ce:italic>m</ce:italic> fluoride; oxyfluoridotantalate anions such as [TaF<ce:inf loc=\\\"post\\\">3</ce:inf>(OH)<ce:inf loc=\\\"post\\\">3</ce:inf><ce:sup loc=\\\"post\\\">−</ce:sup>] dominate in solutions containing intermediate fluoride concentrations (0.02–1 <ce:italic>m</ce:italic>), and the fluoridotantalate anions [TaF<ce:inf loc=\\\"post\\\">9</ce:inf><ce:sup loc=\\\"post\\\">4−</ce:sup> to TaF<ce:inf loc=\\\"post\\\">7</ce:inf><ce:sup loc=\\\"post\\\">2−</ce:sup>] occur in more concentrated fluoride solutions (>1 <ce:italic>m</ce:italic>) at hydrothermal conditions (∼100–400 °C). Derived thermodynamic data for these species enable better understanding and geochemical modelling of Ta transport in hydrothermal fluids, highlighting the potential of F-rich fluids to transport significant amounts of Ta.\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gca.2024.10.019\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2024.10.019","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
了解钽(Ta)在热液系统中的行为对于了解其地球化学富集过程和通过湿法冶金进行经济提取至关重要。然而,钽在热液系统中的行为特征仍然不甚明了。本研究利用原位高能量分辨率荧光检测 X 射线吸收光谱(HERFD-XAS),研究了五价 Ta(V)在富含氟化物(F)和氯化物(Cl)的热液溶液(温度高达 413 °C、压力高达 800 巴)中的配位化学、标示和溶解度。研究结果表明,在所研究的最高温度下,富氟流体溶液中的高阶氟对钽酸盐络合物具有稳定性,这突出表明了氟在水溶液中通过形成稳定的氟对钽酸盐络合物来提高钽溶解度的重要作用。在含氟量≥1 m的溶液中,随着温度的变化,可观察到从非氟阳离子四阴离子(TaF94-)向七氟阳离子二阴离子(TaF72-)络合物的转变。相反,我们的研究结果表明,即使在高Cl(∼6 m)的水溶液中,氯化物在Ta络合中的作用也微乎其微,这表明氯化Ta络合物不会对热液系统中的Ta迁移产生重大影响。现有的溶解度数据是根据整合了原位 XAS 结果的最新标示模型重新解释的。这证实了在含0.02 m氟化物的溶液中,Ta(OH)5(aq)占主导地位;在含中等氟化物浓度(0.02-1 m)的溶液中,氧氟阳离子(如[TaF3(OH)3-])占主导地位;在热液条件下(∼100-400 °C),氟阳离子[TaF94- 至 TaF72-]出现在浓度较高(1 m)的氟化物溶液中。推导出的这些物种的热力学数据有助于更好地理解热液中Ta的迁移并建立地球化学模型,突出了富氟流体迁移大量Ta的潜力。
Understanding the behaviour of tantalum (Ta) in hydrothermal systems is pivotal for understanding its geochemical enrichment processes and economic extraction via hydrometallurgy. Yet, its behaviour in hydrothermal systems remains poorly characterised. This study investigates the coordination chemistry, speciation, and solubility of pentavalent Ta(V) in fluoride (F) − and chloride (Cl) −rich hydrothermal solutions up to 413 °C and 800 bar, utilising in-situ High Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy (HERFD-XAS). The results reveal the stability of high order fluoridotantalate complexes in fluoride-rich fluids solutions up to the highest investigated temperature, highlighting fluoride’s paramount role in enhancing Ta solubility through the formation of stable fluoridotantalate complexes in aqueous solutions. A transition from nonafluoridotantalate tetraanion (TaF94−) to heptafluoridotantalate dianion (TaF72−) complexes was observed as a function of temperature in solutions containing ≥1 m fluoride. Conversely, our findings indicate a negligible role for chloride in Ta complexation even in high Cl (∼6 m) aqueous solutions, suggesting that Ta chloride complexes do not contribute significantly to Ta transport in hydrothermal systems. Existing solubility data were reinterpreted based on an updated speciation model that integrates the in-situ XAS results. This confirms that Ta(OH)5(aq) predominates in solutions containing <0.02 m fluoride; oxyfluoridotantalate anions such as [TaF3(OH)3−] dominate in solutions containing intermediate fluoride concentrations (0.02–1 m), and the fluoridotantalate anions [TaF94− to TaF72−] occur in more concentrated fluoride solutions (>1 m) at hydrothermal conditions (∼100–400 °C). Derived thermodynamic data for these species enable better understanding and geochemical modelling of Ta transport in hydrothermal fluids, highlighting the potential of F-rich fluids to transport significant amounts of Ta.
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.