西北非 8326 号未碎屑鸽纹岩积斜长白云母的岩石成因:缩小白云岩与透辉石之间的差距

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geochimica et Cosmochimica Acta Pub Date : 2024-11-05 DOI:10.1016/j.gca.2024.11.004
Xiao-Wen Liu, Ai-Cheng Zhang, Li-Hui Chen, Lang Zhang, Xiao-Jun Wang, Jia Liu, Li-Ping Qin, Yu Liu, Qiu-Li Li, Xiao-Xiao Ling
{"title":"西北非 8326 号未碎屑鸽纹岩积斜长白云母的岩石成因:缩小白云岩与透辉石之间的差距","authors":"Xiao-Wen Liu, Ai-Cheng Zhang, Li-Hui Chen, Lang Zhang, Xiao-Jun Wang, Jia Liu, Li-Ping Qin, Yu Liu, Qiu-Li Li, Xiao-Xiao Ling","doi":"10.1016/j.gca.2024.11.004","DOIUrl":null,"url":null,"abstract":"Understanding of the diversity and petrogenesis of achondrites is critical for deciphering magmatic processes and the early evolution of planets and asteroids. Here, we report the detailed petrologic, mineralogical, geochemical, and chronological features of the unbrecciated Vestan meteorite Northwest Africa (NWA) 8326. We found that NWA 8326 is composed of coarse-grained orthopyroxene (∼74 vol%), plagioclase (∼19 vol%), fine-grained augite (∼5 vol%), and many accessory minerals such as chromite, ilmenite, Fe-sulfide, silica phases, K-feldspar, Ca-phosphate phases, zircon, baddeleyite, rutile, and primary Si,Al,K-rich glass, differing from typical howardite-eucrite-diogenite meteorites. Based on textural feature and compositional calculation of pyroxene, we suggest that the coarse-grained orthopyroxene was inverted from primary pigeonite and NWA 8326 should be classified as a pigeonite cumulate eucrite. The oxygen and chromium isotope data (Δ<ce:sup loc=\"post\">17</ce:sup>O = − 0.254 ± 0.009 ‰; ε<ce:sup loc=\"post\">54</ce:sup>Cr = − 0.60 ± 0.06) support this classification. A few zircon aggregates are observed in NWA 8326 and the grains therein show a core-mantle zoned texture in cathodoluminescence (CL) images, with the cores being dark and Al-rich while the mantles being bright and Al-poor. We interpret that the CL-dark cores are xenocrystic zircon grains derived from eucrites, whose presence indicates that NWA 8326 should have formed through partial melting of the Vestan mantle, with assimilation of eucritic material. The presence of xenocrystic zircon and primary Si,Al,K-rich glass and the large compositional variation of plagioclase indicate that NWA 8326 is an unequilibrated cumulate eucrite and hence the zircon <ce:sup loc=\"post\">207</ce:sup>Pb/<ce:sup loc=\"post\">206</ce:sup>Pb age of 4559.2 ± 5.2 (2σ) Ma represents the crystallization of NWA 8326. Reconciling the cumulative texture with the presence of the chemically evolved glass, NWA 8326 would be excavated during the late stage of its crystallization and escaped the prevalent crustal thermal metamorphism of the eucrite parent body. The Mg isotopic composition of NWA 8326 is higher than most diogenites, which suggests that the parent magma of such a pigeonite cumulate eucrite was derived from a source region with heavier magnesium isotopic composition (μ<ce:sup loc=\"post\">25</ce:sup>Mg: −90 to − 96 ppm).","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"46 1 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petrogenesis of the unbrecciated pigeonite cumulate eucrite Northwest Africa 8326: Bridging the gap between eucrites and diogenites\",\"authors\":\"Xiao-Wen Liu, Ai-Cheng Zhang, Li-Hui Chen, Lang Zhang, Xiao-Jun Wang, Jia Liu, Li-Ping Qin, Yu Liu, Qiu-Li Li, Xiao-Xiao Ling\",\"doi\":\"10.1016/j.gca.2024.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding of the diversity and petrogenesis of achondrites is critical for deciphering magmatic processes and the early evolution of planets and asteroids. Here, we report the detailed petrologic, mineralogical, geochemical, and chronological features of the unbrecciated Vestan meteorite Northwest Africa (NWA) 8326. We found that NWA 8326 is composed of coarse-grained orthopyroxene (∼74 vol%), plagioclase (∼19 vol%), fine-grained augite (∼5 vol%), and many accessory minerals such as chromite, ilmenite, Fe-sulfide, silica phases, K-feldspar, Ca-phosphate phases, zircon, baddeleyite, rutile, and primary Si,Al,K-rich glass, differing from typical howardite-eucrite-diogenite meteorites. Based on textural feature and compositional calculation of pyroxene, we suggest that the coarse-grained orthopyroxene was inverted from primary pigeonite and NWA 8326 should be classified as a pigeonite cumulate eucrite. The oxygen and chromium isotope data (Δ<ce:sup loc=\\\"post\\\">17</ce:sup>O = − 0.254 ± 0.009 ‰; ε<ce:sup loc=\\\"post\\\">54</ce:sup>Cr = − 0.60 ± 0.06) support this classification. A few zircon aggregates are observed in NWA 8326 and the grains therein show a core-mantle zoned texture in cathodoluminescence (CL) images, with the cores being dark and Al-rich while the mantles being bright and Al-poor. We interpret that the CL-dark cores are xenocrystic zircon grains derived from eucrites, whose presence indicates that NWA 8326 should have formed through partial melting of the Vestan mantle, with assimilation of eucritic material. The presence of xenocrystic zircon and primary Si,Al,K-rich glass and the large compositional variation of plagioclase indicate that NWA 8326 is an unequilibrated cumulate eucrite and hence the zircon <ce:sup loc=\\\"post\\\">207</ce:sup>Pb/<ce:sup loc=\\\"post\\\">206</ce:sup>Pb age of 4559.2 ± 5.2 (2σ) Ma represents the crystallization of NWA 8326. Reconciling the cumulative texture with the presence of the chemically evolved glass, NWA 8326 would be excavated during the late stage of its crystallization and escaped the prevalent crustal thermal metamorphism of the eucrite parent body. The Mg isotopic composition of NWA 8326 is higher than most diogenites, which suggests that the parent magma of such a pigeonite cumulate eucrite was derived from a source region with heavier magnesium isotopic composition (μ<ce:sup loc=\\\"post\\\">25</ce:sup>Mg: −90 to − 96 ppm).\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"46 1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gca.2024.11.004\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2024.11.004","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

了解隐晶岩的多样性和岩石成因对于破译岩浆过程以及行星和小行星的早期演化至关重要。在这里,我们报告了未破碎的维斯坦陨石西北非洲(NWA)8326 的详细岩石学、矿物学、地球化学和年代学特征。我们发现 NWA 8326 是由粗粒正长石(∼74 vol%)、斜长石(∼19 vol%)、细粒辉石(∼5 vol%)和许多附属矿物如铬铁矿组成、钛铁矿、硫化铁、硅相、钾长石、磷酸钙相、锆石、巴德来石、金红石和富含Si、Al、K的原生玻璃等多种附属矿物,与典型的榴辉岩-白云母-透辉石陨石不同。根据辉石的纹理特征和成分计算,我们认为粗粒正长辉石是由原生鸽血石倒置而来,NWA 8326 应归类为鸽血石积层白云母。氧和铬同位素数据(Δ17O = - 0.254 ± 0.009 ‰;ε54Cr = - 0.60 ± 0.06)支持这一分类。在 NWA 8326 中观察到一些锆石聚集体,其中的晶粒在阴极发光(CL)图像中显示出核-幔分带纹理,核为暗色,富铝,而幔为亮色,贫铝。我们的解释是,CL暗色的核心是来源于欧几里得岩的异晶锆石颗粒,它们的存在表明NWA 8326应该是通过维斯塔地幔的部分熔融以及欧几里得岩物质的同化形成的。异晶锆石和富含Si,Al,K的原生玻璃的存在以及斜长石成分的巨大变化表明,NWA 8326是一个不平衡的积层白云母,因此锆石207Pb/206Pb年龄为4559.2 ± 5.2 (2σ) Ma,代表了NWA 8326的结晶。根据累积质地与化学演化玻璃的存在相吻合,NWA 8326应该是在结晶后期出土的,躲过了闪长岩母体普遍的地壳热变质作用。NWA 8326 的镁同位素组成高于大多数透辉岩,这表明这种鸽笼状积层白云母的母岩浆来自镁同位素组成(μ25Mg:-90 至 -96ppm)较重的源区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Petrogenesis of the unbrecciated pigeonite cumulate eucrite Northwest Africa 8326: Bridging the gap between eucrites and diogenites
Understanding of the diversity and petrogenesis of achondrites is critical for deciphering magmatic processes and the early evolution of planets and asteroids. Here, we report the detailed petrologic, mineralogical, geochemical, and chronological features of the unbrecciated Vestan meteorite Northwest Africa (NWA) 8326. We found that NWA 8326 is composed of coarse-grained orthopyroxene (∼74 vol%), plagioclase (∼19 vol%), fine-grained augite (∼5 vol%), and many accessory minerals such as chromite, ilmenite, Fe-sulfide, silica phases, K-feldspar, Ca-phosphate phases, zircon, baddeleyite, rutile, and primary Si,Al,K-rich glass, differing from typical howardite-eucrite-diogenite meteorites. Based on textural feature and compositional calculation of pyroxene, we suggest that the coarse-grained orthopyroxene was inverted from primary pigeonite and NWA 8326 should be classified as a pigeonite cumulate eucrite. The oxygen and chromium isotope data (Δ17O = − 0.254 ± 0.009 ‰; ε54Cr = − 0.60 ± 0.06) support this classification. A few zircon aggregates are observed in NWA 8326 and the grains therein show a core-mantle zoned texture in cathodoluminescence (CL) images, with the cores being dark and Al-rich while the mantles being bright and Al-poor. We interpret that the CL-dark cores are xenocrystic zircon grains derived from eucrites, whose presence indicates that NWA 8326 should have formed through partial melting of the Vestan mantle, with assimilation of eucritic material. The presence of xenocrystic zircon and primary Si,Al,K-rich glass and the large compositional variation of plagioclase indicate that NWA 8326 is an unequilibrated cumulate eucrite and hence the zircon 207Pb/206Pb age of 4559.2 ± 5.2 (2σ) Ma represents the crystallization of NWA 8326. Reconciling the cumulative texture with the presence of the chemically evolved glass, NWA 8326 would be excavated during the late stage of its crystallization and escaped the prevalent crustal thermal metamorphism of the eucrite parent body. The Mg isotopic composition of NWA 8326 is higher than most diogenites, which suggests that the parent magma of such a pigeonite cumulate eucrite was derived from a source region with heavier magnesium isotopic composition (μ25Mg: −90 to − 96 ppm).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
期刊最新文献
Methane Index and TEX86 values in cold seep sediments: Implications for paleo-environmental reconstructions Gamma-irradiation-induced reduction of aqueous Se(VI) by natural pyrite Two isotopically distinct populations of refractory inclusions in the EHa3 chondrite Sahara 97072 – Significance for understanding the evolution of the CAI-formation region Competitive and cooperative effects of chloride on palladium(II) adsorption to iron (oxyhydr)oxides: Implications for mobility during weathering Oxygen isotope constraints on proto-kimberlite melt modification through assimilation of low δ18O recycled crust in the deep lithosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1