{"title":"便携式微型电化学池:将微取样和微电解分析相结合,实现多用途现场亚硝酸盐传感","authors":"Shohreh Madani, Amir Hatamie","doi":"10.1021/acs.langmuir.4c03398","DOIUrl":null,"url":null,"abstract":"In modern analytical chemistry, one of the primary goals is to develop miniaturized, easy-to-use sensing tools, particularly those with multitasking capabilities. In this work, we designed a mini-voltammetric cell that integrates a modified Au microelectrode (Au/Au NPs as the working electrode) and an Ag/AgCl reference electrode installed within a micropipette tip. This combined tool not only enables portable and on-site microvolume sampling─requiring only a microvolume (around 20–40 μL) or a single droplet─but also facilitates direct micro-electroanalysis in a short time. To evaluate its capabilities, the mini-voltammetric cell was optimized for trace analysis of nitrite ions and demonstrated linear responses in the ranges of 20–150 and 150–1200 μM, with an acceptable limit of detection (LOD) of 18.40 μM, meeting both WHO and EPA standards for nitrite levels. Furthermore, it exhibited high selectivity, stability (up to 36 continuous measurements with only a 3.24% signal drop), and acceptable repeatability (RSD of 2.98%, <i>n</i> = 15). The analytical performance of this miniaturized tool was further assessed through the sampling and detection of nitrite ions in various real samples with different matrixes: (1) urine samples, for the fast diagnosis of urinary tract infections (UTIs), where nitrite ions are detected as biomarkers of UTIs; (2) river water polluted with agricultural waste, where nitrite ions serve as pollutants from nitrogen fertilizers; and (3) on the hands and in forensic investigations, where nitrite ions are detected as indicators of gunshot residue, crucial in crime scene examinations. All real samples were analyzed using the standard addition method and recovery tests, yielding acceptable results. Additionally, the proposed mini-analytical tool was evaluated for its sustainability and applicability using two recognized metrics: The Green Analytical Procedure Index (GAPI) and the Blue Applicability Grade Index (BAGI). The results confirmed that this method can be classified as both a green analytical method and highly applicable. Finally, the practical results demonstrated that the proposed miniaturized electroanalytical tool exhibits reliable performance, high sensitivity and selectivity, and fast response in the on-site microanalysis of nitrite, without the need for any reagents or complex sampling steps, across different real samples (such as clinical, forensic, and environmental samples). We believe the proposed mini-voltammetric cell could be used as an alternative to current detection methods, and with suitable modifications, it could be adapted for the microanalysis of other applications and (bio)targets with small volumes in the near future.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"251 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portable Mini-Electrochemical Cell: Integrating Microsampling and Micro-Electroanalysis for Multipurpose On-Site Nitrite Sensing\",\"authors\":\"Shohreh Madani, Amir Hatamie\",\"doi\":\"10.1021/acs.langmuir.4c03398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern analytical chemistry, one of the primary goals is to develop miniaturized, easy-to-use sensing tools, particularly those with multitasking capabilities. In this work, we designed a mini-voltammetric cell that integrates a modified Au microelectrode (Au/Au NPs as the working electrode) and an Ag/AgCl reference electrode installed within a micropipette tip. This combined tool not only enables portable and on-site microvolume sampling─requiring only a microvolume (around 20–40 μL) or a single droplet─but also facilitates direct micro-electroanalysis in a short time. To evaluate its capabilities, the mini-voltammetric cell was optimized for trace analysis of nitrite ions and demonstrated linear responses in the ranges of 20–150 and 150–1200 μM, with an acceptable limit of detection (LOD) of 18.40 μM, meeting both WHO and EPA standards for nitrite levels. Furthermore, it exhibited high selectivity, stability (up to 36 continuous measurements with only a 3.24% signal drop), and acceptable repeatability (RSD of 2.98%, <i>n</i> = 15). The analytical performance of this miniaturized tool was further assessed through the sampling and detection of nitrite ions in various real samples with different matrixes: (1) urine samples, for the fast diagnosis of urinary tract infections (UTIs), where nitrite ions are detected as biomarkers of UTIs; (2) river water polluted with agricultural waste, where nitrite ions serve as pollutants from nitrogen fertilizers; and (3) on the hands and in forensic investigations, where nitrite ions are detected as indicators of gunshot residue, crucial in crime scene examinations. All real samples were analyzed using the standard addition method and recovery tests, yielding acceptable results. Additionally, the proposed mini-analytical tool was evaluated for its sustainability and applicability using two recognized metrics: The Green Analytical Procedure Index (GAPI) and the Blue Applicability Grade Index (BAGI). The results confirmed that this method can be classified as both a green analytical method and highly applicable. Finally, the practical results demonstrated that the proposed miniaturized electroanalytical tool exhibits reliable performance, high sensitivity and selectivity, and fast response in the on-site microanalysis of nitrite, without the need for any reagents or complex sampling steps, across different real samples (such as clinical, forensic, and environmental samples). We believe the proposed mini-voltammetric cell could be used as an alternative to current detection methods, and with suitable modifications, it could be adapted for the microanalysis of other applications and (bio)targets with small volumes in the near future.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"251 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03398\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03398","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Portable Mini-Electrochemical Cell: Integrating Microsampling and Micro-Electroanalysis for Multipurpose On-Site Nitrite Sensing
In modern analytical chemistry, one of the primary goals is to develop miniaturized, easy-to-use sensing tools, particularly those with multitasking capabilities. In this work, we designed a mini-voltammetric cell that integrates a modified Au microelectrode (Au/Au NPs as the working electrode) and an Ag/AgCl reference electrode installed within a micropipette tip. This combined tool not only enables portable and on-site microvolume sampling─requiring only a microvolume (around 20–40 μL) or a single droplet─but also facilitates direct micro-electroanalysis in a short time. To evaluate its capabilities, the mini-voltammetric cell was optimized for trace analysis of nitrite ions and demonstrated linear responses in the ranges of 20–150 and 150–1200 μM, with an acceptable limit of detection (LOD) of 18.40 μM, meeting both WHO and EPA standards for nitrite levels. Furthermore, it exhibited high selectivity, stability (up to 36 continuous measurements with only a 3.24% signal drop), and acceptable repeatability (RSD of 2.98%, n = 15). The analytical performance of this miniaturized tool was further assessed through the sampling and detection of nitrite ions in various real samples with different matrixes: (1) urine samples, for the fast diagnosis of urinary tract infections (UTIs), where nitrite ions are detected as biomarkers of UTIs; (2) river water polluted with agricultural waste, where nitrite ions serve as pollutants from nitrogen fertilizers; and (3) on the hands and in forensic investigations, where nitrite ions are detected as indicators of gunshot residue, crucial in crime scene examinations. All real samples were analyzed using the standard addition method and recovery tests, yielding acceptable results. Additionally, the proposed mini-analytical tool was evaluated for its sustainability and applicability using two recognized metrics: The Green Analytical Procedure Index (GAPI) and the Blue Applicability Grade Index (BAGI). The results confirmed that this method can be classified as both a green analytical method and highly applicable. Finally, the practical results demonstrated that the proposed miniaturized electroanalytical tool exhibits reliable performance, high sensitivity and selectivity, and fast response in the on-site microanalysis of nitrite, without the need for any reagents or complex sampling steps, across different real samples (such as clinical, forensic, and environmental samples). We believe the proposed mini-voltammetric cell could be used as an alternative to current detection methods, and with suitable modifications, it could be adapted for the microanalysis of other applications and (bio)targets with small volumes in the near future.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).