Ismi Khairunnissa Ariani, Sevcan Aydin, Cigdem Yangin-Gomec
{"title":"在处理制药废水的 UASB 反应器中评估 Eichhornia crassipes 辅助生物质对抗生素的去除和转化产物。","authors":"Ismi Khairunnissa Ariani, Sevcan Aydin, Cigdem Yangin-Gomec","doi":"10.1080/08927014.2024.2429554","DOIUrl":null,"url":null,"abstract":"<p><p>The dried roots of an aquatic plant (<i>Eichhornia crassipes</i> commonly known as water hyacinth) were included in the biomass of an upflow anaerobic sludge bed (UASB) reactor to evaluate the improvement effect on treating antibiotic-containing synthetic pharmaceutical effluent. The removals of three different antibiotics, namely erythromycin (ERY), tetracycline (TET) and sulfamethoxazole (SMX), were investigated using the unacclimatized inoculum during the startup period. Then, about 2.5% <i>E. crassipes</i> (w/w of volatile solids) was added to biomass during the last month of operation. Almost complete removal of each antibiotic was achieved, with efficiencies up to 99% (with initial ERY, TET and SMX of 200, 75 and 230 mg L<sup>-1</sup>, respectively) regardless of <i>E. crassipes</i> addition. The presence of transformation products (TPs) of selected antibiotics was also investigated and ERY showed a higher potential to transform into its metabolites than SMX and TET. With the studied amount of <i>E. crassipes</i>, no positive impact against TPs formation was observed.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-17"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of antibiotics removal and transformation products by <i>Eichhornia crassipes</i>-assisted biomass in a UASB reactor treating pharmaceutical effluents.\",\"authors\":\"Ismi Khairunnissa Ariani, Sevcan Aydin, Cigdem Yangin-Gomec\",\"doi\":\"10.1080/08927014.2024.2429554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dried roots of an aquatic plant (<i>Eichhornia crassipes</i> commonly known as water hyacinth) were included in the biomass of an upflow anaerobic sludge bed (UASB) reactor to evaluate the improvement effect on treating antibiotic-containing synthetic pharmaceutical effluent. The removals of three different antibiotics, namely erythromycin (ERY), tetracycline (TET) and sulfamethoxazole (SMX), were investigated using the unacclimatized inoculum during the startup period. Then, about 2.5% <i>E. crassipes</i> (w/w of volatile solids) was added to biomass during the last month of operation. Almost complete removal of each antibiotic was achieved, with efficiencies up to 99% (with initial ERY, TET and SMX of 200, 75 and 230 mg L<sup>-1</sup>, respectively) regardless of <i>E. crassipes</i> addition. The presence of transformation products (TPs) of selected antibiotics was also investigated and ERY showed a higher potential to transform into its metabolites than SMX and TET. With the studied amount of <i>E. crassipes</i>, no positive impact against TPs formation was observed.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2429554\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2429554","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Assessment of antibiotics removal and transformation products by Eichhornia crassipes-assisted biomass in a UASB reactor treating pharmaceutical effluents.
The dried roots of an aquatic plant (Eichhornia crassipes commonly known as water hyacinth) were included in the biomass of an upflow anaerobic sludge bed (UASB) reactor to evaluate the improvement effect on treating antibiotic-containing synthetic pharmaceutical effluent. The removals of three different antibiotics, namely erythromycin (ERY), tetracycline (TET) and sulfamethoxazole (SMX), were investigated using the unacclimatized inoculum during the startup period. Then, about 2.5% E. crassipes (w/w of volatile solids) was added to biomass during the last month of operation. Almost complete removal of each antibiotic was achieved, with efficiencies up to 99% (with initial ERY, TET and SMX of 200, 75 and 230 mg L-1, respectively) regardless of E. crassipes addition. The presence of transformation products (TPs) of selected antibiotics was also investigated and ERY showed a higher potential to transform into its metabolites than SMX and TET. With the studied amount of E. crassipes, no positive impact against TPs formation was observed.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.