Marta Szymanek-Pilarczyk, Michał Jakub Nowak, Tomasz Góra, Łukasz Oleksy, Miłosz Drozd, Jacek Wąsik
{"title":"以青少年足球运动员的短跑测试为例,评估改良波浪周期模型的效率。","authors":"Marta Szymanek-Pilarczyk, Michał Jakub Nowak, Tomasz Góra, Łukasz Oleksy, Miłosz Drozd, Jacek Wąsik","doi":"10.5114/jhk/191699","DOIUrl":null,"url":null,"abstract":"<p><p>The research aimed to evaluate the modified model of wave periodization efficiency in running speed tests conducted among soccer players aged 12 to 16. Participants included prospective players of a leading Polish top league soccer club. The research was carried out from 2018 to 2022 in June (Testing A) and December (Testing B) of each year. The test involved 30-m straight line running with 5-, 10-, and 30-m split time measurements. For this purpose, electronic photocells were used (FITLIGHT, Canada). The six-month training intervention increased the athletes' speed as there was a considerable decrease in the running time over the distance of 5 m (F = 7.86; p < 0.001), 10 m (F = 73.99; p < 0.001) and 30 m (F = 127.55; p < 0.001). Analysis of running performance of young soccer players aged 12-16 showed a significant improvement in speed at distances of 5, 10 and 30 m, confirming training effectiveness based on the wave periodization model. The negative correlation between testing year and performance suggests the influence of biological development on players' speed. The COVID-19 pandemic has impacted training, which was reflected in reduced differences between test scores. Improving initial running technique can contribute to better match results, which emphasizes the need for an individual approach to the physical preparation of players.</p>","PeriodicalId":16055,"journal":{"name":"Journal of Human Kinetics","volume":"94 ","pages":"215-226"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571460/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Evaluation of the Modified Wave Periodization Model Efficiency on the Example of Young Soccer Players' Sprint Tests.\",\"authors\":\"Marta Szymanek-Pilarczyk, Michał Jakub Nowak, Tomasz Góra, Łukasz Oleksy, Miłosz Drozd, Jacek Wąsik\",\"doi\":\"10.5114/jhk/191699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The research aimed to evaluate the modified model of wave periodization efficiency in running speed tests conducted among soccer players aged 12 to 16. Participants included prospective players of a leading Polish top league soccer club. The research was carried out from 2018 to 2022 in June (Testing A) and December (Testing B) of each year. The test involved 30-m straight line running with 5-, 10-, and 30-m split time measurements. For this purpose, electronic photocells were used (FITLIGHT, Canada). The six-month training intervention increased the athletes' speed as there was a considerable decrease in the running time over the distance of 5 m (F = 7.86; p < 0.001), 10 m (F = 73.99; p < 0.001) and 30 m (F = 127.55; p < 0.001). Analysis of running performance of young soccer players aged 12-16 showed a significant improvement in speed at distances of 5, 10 and 30 m, confirming training effectiveness based on the wave periodization model. The negative correlation between testing year and performance suggests the influence of biological development on players' speed. The COVID-19 pandemic has impacted training, which was reflected in reduced differences between test scores. Improving initial running technique can contribute to better match results, which emphasizes the need for an individual approach to the physical preparation of players.</p>\",\"PeriodicalId\":16055,\"journal\":{\"name\":\"Journal of Human Kinetics\",\"volume\":\"94 \",\"pages\":\"215-226\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571460/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Kinetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5114/jhk/191699\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Kinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/jhk/191699","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
The Evaluation of the Modified Wave Periodization Model Efficiency on the Example of Young Soccer Players' Sprint Tests.
The research aimed to evaluate the modified model of wave periodization efficiency in running speed tests conducted among soccer players aged 12 to 16. Participants included prospective players of a leading Polish top league soccer club. The research was carried out from 2018 to 2022 in June (Testing A) and December (Testing B) of each year. The test involved 30-m straight line running with 5-, 10-, and 30-m split time measurements. For this purpose, electronic photocells were used (FITLIGHT, Canada). The six-month training intervention increased the athletes' speed as there was a considerable decrease in the running time over the distance of 5 m (F = 7.86; p < 0.001), 10 m (F = 73.99; p < 0.001) and 30 m (F = 127.55; p < 0.001). Analysis of running performance of young soccer players aged 12-16 showed a significant improvement in speed at distances of 5, 10 and 30 m, confirming training effectiveness based on the wave periodization model. The negative correlation between testing year and performance suggests the influence of biological development on players' speed. The COVID-19 pandemic has impacted training, which was reflected in reduced differences between test scores. Improving initial running technique can contribute to better match results, which emphasizes the need for an individual approach to the physical preparation of players.
期刊介绍:
The Journal of Human Kinetics is an open access interdisciplinary periodical offering the latest research in the science of human movement studies. This comprehensive professional journal features articles and research notes encompassing such topic areas as: Kinesiology, Exercise Physiology and Nutrition, Sports Training and Behavioural Sciences in Sport, but especially considering elite and competitive aspects of sport.
The journal publishes original papers, invited reviews, short communications and letters to the Editors. Manuscripts submitted to the journal must contain novel data on theoretical or experimental research or on practical applications in the field of sport sciences.
The Journal of Human Kinetics is published in March, June, September and December.
We encourage scientists from around the world to submit their papers to our periodical.