Alan M. Pardo, Andres Legarra, Zulma G. Vitezica, Natalia S. Forneris, Daniel O. Maizon, Sebastián Munilla
{"title":"关于在血统指定错误和缺乏关联性的情况下 LR 方法检测偏差的能力","authors":"Alan M. Pardo, Andres Legarra, Zulma G. Vitezica, Natalia S. Forneris, Daniel O. Maizon, Sebastián Munilla","doi":"10.1186/s12711-024-00943-1","DOIUrl":null,"url":null,"abstract":"Cross-validation techniques in genetic evaluations encounter limitations due to the unobservable nature of breeding values and the challenge of validating estimated breeding values (EBVs) against pre-corrected phenotypes, challenges which the Linear Regression (LR) method addresses as an alternative. Furthermore, beef cattle genetic evaluation programs confront challenges with connectedness among herds and pedigree errors. The objective of this work was to evaluate the LR method's performance under pedigree errors and weak connectedness typical in beef cattle genetic evaluations, through simulation. We simulated a beef cattle population resembling the Argentinean Brangus, including a quantitative trait selected over six pseudo-generations with a heritability of 0.4. This study considered various scenarios, including: 25% and 40% pedigree errors (PE-25 and PE-40), weak and strong connectedness among herds (WCO and SCO, respectively), and a benchmark scenario (BEN) with complete pedigree and optimal herd connections. Over six pseudo-generations of selection, genetic gain was simulated to be under- and over-estimated in PE-40 and WCO, respectively, contrary to the BEN scenario which was unbiased. In genetic evaluations with PE-25 and PE-40, true biases of − 0.13 and − 0.18 genetic standard deviations were simulated, respectively. In the BEN scenario, the LR method accurately estimated bias, however, in PE-25 and PE-40 scenarios, it overestimated biases by 0.17 and 0.25 genetic standard deviations, respectively. In herds facing WCO, significant true bias due to confounding environmental and genetic effects was simulated, and the corresponding LR statistic failed to accurately estimate the magnitude and direction of this bias. On average, true dispersion values were close to one for BEN, PE-40, SCO and WCO, showing no significant inflation or deflation, and the values were accurately estimated by LR. However, PE-25 exhibited inflation of EBVs and was slightly underestimated by LR. Accuracies and reliabilities showed good agreement between true and LR estimated values for the scenarios evaluated. The LR method demonstrated limitations in identifying biases induced by incomplete pedigrees, including scenarios with as much as 40% pedigree errors, or lack of connectedness, but it was effective in assessing dispersion, and population accuracies and reliabilities even in the challenging scenarios addressed.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the ability of the LR method to detect bias when there is pedigree misspecification and lack of connectedness\",\"authors\":\"Alan M. Pardo, Andres Legarra, Zulma G. Vitezica, Natalia S. Forneris, Daniel O. Maizon, Sebastián Munilla\",\"doi\":\"10.1186/s12711-024-00943-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-validation techniques in genetic evaluations encounter limitations due to the unobservable nature of breeding values and the challenge of validating estimated breeding values (EBVs) against pre-corrected phenotypes, challenges which the Linear Regression (LR) method addresses as an alternative. Furthermore, beef cattle genetic evaluation programs confront challenges with connectedness among herds and pedigree errors. The objective of this work was to evaluate the LR method's performance under pedigree errors and weak connectedness typical in beef cattle genetic evaluations, through simulation. We simulated a beef cattle population resembling the Argentinean Brangus, including a quantitative trait selected over six pseudo-generations with a heritability of 0.4. This study considered various scenarios, including: 25% and 40% pedigree errors (PE-25 and PE-40), weak and strong connectedness among herds (WCO and SCO, respectively), and a benchmark scenario (BEN) with complete pedigree and optimal herd connections. Over six pseudo-generations of selection, genetic gain was simulated to be under- and over-estimated in PE-40 and WCO, respectively, contrary to the BEN scenario which was unbiased. In genetic evaluations with PE-25 and PE-40, true biases of − 0.13 and − 0.18 genetic standard deviations were simulated, respectively. In the BEN scenario, the LR method accurately estimated bias, however, in PE-25 and PE-40 scenarios, it overestimated biases by 0.17 and 0.25 genetic standard deviations, respectively. In herds facing WCO, significant true bias due to confounding environmental and genetic effects was simulated, and the corresponding LR statistic failed to accurately estimate the magnitude and direction of this bias. On average, true dispersion values were close to one for BEN, PE-40, SCO and WCO, showing no significant inflation or deflation, and the values were accurately estimated by LR. However, PE-25 exhibited inflation of EBVs and was slightly underestimated by LR. Accuracies and reliabilities showed good agreement between true and LR estimated values for the scenarios evaluated. The LR method demonstrated limitations in identifying biases induced by incomplete pedigrees, including scenarios with as much as 40% pedigree errors, or lack of connectedness, but it was effective in assessing dispersion, and population accuracies and reliabilities even in the challenging scenarios addressed.\",\"PeriodicalId\":55120,\"journal\":{\"name\":\"Genetics Selection Evolution\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics Selection Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12711-024-00943-1\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00943-1","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
On the ability of the LR method to detect bias when there is pedigree misspecification and lack of connectedness
Cross-validation techniques in genetic evaluations encounter limitations due to the unobservable nature of breeding values and the challenge of validating estimated breeding values (EBVs) against pre-corrected phenotypes, challenges which the Linear Regression (LR) method addresses as an alternative. Furthermore, beef cattle genetic evaluation programs confront challenges with connectedness among herds and pedigree errors. The objective of this work was to evaluate the LR method's performance under pedigree errors and weak connectedness typical in beef cattle genetic evaluations, through simulation. We simulated a beef cattle population resembling the Argentinean Brangus, including a quantitative trait selected over six pseudo-generations with a heritability of 0.4. This study considered various scenarios, including: 25% and 40% pedigree errors (PE-25 and PE-40), weak and strong connectedness among herds (WCO and SCO, respectively), and a benchmark scenario (BEN) with complete pedigree and optimal herd connections. Over six pseudo-generations of selection, genetic gain was simulated to be under- and over-estimated in PE-40 and WCO, respectively, contrary to the BEN scenario which was unbiased. In genetic evaluations with PE-25 and PE-40, true biases of − 0.13 and − 0.18 genetic standard deviations were simulated, respectively. In the BEN scenario, the LR method accurately estimated bias, however, in PE-25 and PE-40 scenarios, it overestimated biases by 0.17 and 0.25 genetic standard deviations, respectively. In herds facing WCO, significant true bias due to confounding environmental and genetic effects was simulated, and the corresponding LR statistic failed to accurately estimate the magnitude and direction of this bias. On average, true dispersion values were close to one for BEN, PE-40, SCO and WCO, showing no significant inflation or deflation, and the values were accurately estimated by LR. However, PE-25 exhibited inflation of EBVs and was slightly underestimated by LR. Accuracies and reliabilities showed good agreement between true and LR estimated values for the scenarios evaluated. The LR method demonstrated limitations in identifying biases induced by incomplete pedigrees, including scenarios with as much as 40% pedigree errors, or lack of connectedness, but it was effective in assessing dispersion, and population accuracies and reliabilities even in the challenging scenarios addressed.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.