Elise J. Needham, Janne R. Hingst, Johan D. Onslev, Alexis Diaz-Vegas, Magnus R. Leandersson, Hannah Huckstep, Jonas M. Kristensen, Kohei Kido, Erik A. Richter, Kurt Højlund, Benjamin L. Parker, Kristen Cooke, Guang Yang, Christian Pehmøller, Sean J. Humphrey, David E. James, Jørgen F.P. Wojtaszewski
{"title":"骨骼肌胰岛素抵抗和运动的个性化磷蛋白组学将 MINDY1 与胰岛素作用联系起来","authors":"Elise J. Needham, Janne R. Hingst, Johan D. Onslev, Alexis Diaz-Vegas, Magnus R. Leandersson, Hannah Huckstep, Jonas M. Kristensen, Kohei Kido, Erik A. Richter, Kurt Højlund, Benjamin L. Parker, Kristen Cooke, Guang Yang, Christian Pehmøller, Sean J. Humphrey, David E. James, Jørgen F.P. Wojtaszewski","doi":"10.1016/j.cmet.2024.10.020","DOIUrl":null,"url":null,"abstract":"Type 2 diabetes is preceded by a defective insulin response, yet our knowledge of the precise mechanisms is incomplete. Here, we investigate how insulin resistance alters skeletal muscle signaling and how exercise partially counteracts this effect. We measured parallel phenotypes and phosphoproteomes of insulin-resistant (IR) and insulin-sensitive (IS) men as they responded to exercise and insulin (<em>n</em> = 19, 114 biopsies), quantifying over 12,000 phosphopeptides in each biopsy. Insulin resistance involves selective and time-dependent alterations to signaling, including reduced insulin-stimulated mTORC1 and non-canonical signaling responses. Prior exercise promotes insulin sensitivity even in IR individuals by “priming” a portion of insulin signaling prior to insulin infusion. This includes MINDY1 S441, which we show is an AKT substrate. We found that MINDY1 knockdown enhances insulin-stimulated glucose uptake in rat myotubes. This work delineates the signaling alterations in IR skeletal muscle and identifies MINDY1 as a regulator of insulin action.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"1 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized phosphoproteomics of skeletal muscle insulin resistance and exercise links MINDY1 to insulin action\",\"authors\":\"Elise J. Needham, Janne R. Hingst, Johan D. Onslev, Alexis Diaz-Vegas, Magnus R. Leandersson, Hannah Huckstep, Jonas M. Kristensen, Kohei Kido, Erik A. Richter, Kurt Højlund, Benjamin L. Parker, Kristen Cooke, Guang Yang, Christian Pehmøller, Sean J. Humphrey, David E. James, Jørgen F.P. Wojtaszewski\",\"doi\":\"10.1016/j.cmet.2024.10.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type 2 diabetes is preceded by a defective insulin response, yet our knowledge of the precise mechanisms is incomplete. Here, we investigate how insulin resistance alters skeletal muscle signaling and how exercise partially counteracts this effect. We measured parallel phenotypes and phosphoproteomes of insulin-resistant (IR) and insulin-sensitive (IS) men as they responded to exercise and insulin (<em>n</em> = 19, 114 biopsies), quantifying over 12,000 phosphopeptides in each biopsy. Insulin resistance involves selective and time-dependent alterations to signaling, including reduced insulin-stimulated mTORC1 and non-canonical signaling responses. Prior exercise promotes insulin sensitivity even in IR individuals by “priming” a portion of insulin signaling prior to insulin infusion. This includes MINDY1 S441, which we show is an AKT substrate. We found that MINDY1 knockdown enhances insulin-stimulated glucose uptake in rat myotubes. This work delineates the signaling alterations in IR skeletal muscle and identifies MINDY1 as a regulator of insulin action.\",\"PeriodicalId\":9840,\"journal\":{\"name\":\"Cell metabolism\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell metabolism\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2024.10.020\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.10.020","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Personalized phosphoproteomics of skeletal muscle insulin resistance and exercise links MINDY1 to insulin action
Type 2 diabetes is preceded by a defective insulin response, yet our knowledge of the precise mechanisms is incomplete. Here, we investigate how insulin resistance alters skeletal muscle signaling and how exercise partially counteracts this effect. We measured parallel phenotypes and phosphoproteomes of insulin-resistant (IR) and insulin-sensitive (IS) men as they responded to exercise and insulin (n = 19, 114 biopsies), quantifying over 12,000 phosphopeptides in each biopsy. Insulin resistance involves selective and time-dependent alterations to signaling, including reduced insulin-stimulated mTORC1 and non-canonical signaling responses. Prior exercise promotes insulin sensitivity even in IR individuals by “priming” a portion of insulin signaling prior to insulin infusion. This includes MINDY1 S441, which we show is an AKT substrate. We found that MINDY1 knockdown enhances insulin-stimulated glucose uptake in rat myotubes. This work delineates the signaling alterations in IR skeletal muscle and identifies MINDY1 as a regulator of insulin action.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.