{"title":"考虑互锁效应和磨损行为的 CNS 条件下混凝土/岩石界面剪切的分析解决方案及其应用","authors":"Chaoyang Zhang, Chong Jiang, Li Pang, Yaolong Ma","doi":"10.1007/s10064-024-03994-2","DOIUrl":null,"url":null,"abstract":"<div><p>Using a two-order profile to characterize the concrete/rock interface, this paper proposes an analytical solution for the shear behavior of the concrete/rock interface under constant normal stiffness (<i>CNS</i>), taking into account the interlocking effect and wear behavior. The interlocking effect of second-order asperities is reflected by considering the work and energy, and the analytical expression of wear behavior is obtained by geometrically decomposing the worn rock asperity into finite tiny triangles. Subsequently, the proposed analytical model, consisting of the elastic stage, the sliding stage, and the progressive damage stage, is substituted into the load-transfer governing equation, and the bearing characteristics of rock-socketed piles are figured out by taking advantage of the finite-difference method. Finally, a parametric analysis is conducted to investigate the effects of second-order asperity distribution parameter <span>\\(\\eta\\)</span>, wear coefficient <span>\\(\\xi\\)</span>, and first-order asperity angle <span>\\({\\alpha }_{0}\\)</span>. Both laboratory <i>CNS</i> direct shear tests and field vertical load pile tests are selected to verify the reliability of the proposed analytical model. The results indicate that the proposed analytical model can effectively reflect the variation characteristics of the shear stress-displacement curve and the normal stress-displacement curve under <i>CNS</i> conditions, and its application in the load-transfer behavior of rock-socketed piles can well predict the bearing characteristics.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical solution for concrete/rock interface shearing under CNS considering interlocking effect and wear behavior and its application\",\"authors\":\"Chaoyang Zhang, Chong Jiang, Li Pang, Yaolong Ma\",\"doi\":\"10.1007/s10064-024-03994-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using a two-order profile to characterize the concrete/rock interface, this paper proposes an analytical solution for the shear behavior of the concrete/rock interface under constant normal stiffness (<i>CNS</i>), taking into account the interlocking effect and wear behavior. The interlocking effect of second-order asperities is reflected by considering the work and energy, and the analytical expression of wear behavior is obtained by geometrically decomposing the worn rock asperity into finite tiny triangles. Subsequently, the proposed analytical model, consisting of the elastic stage, the sliding stage, and the progressive damage stage, is substituted into the load-transfer governing equation, and the bearing characteristics of rock-socketed piles are figured out by taking advantage of the finite-difference method. Finally, a parametric analysis is conducted to investigate the effects of second-order asperity distribution parameter <span>\\\\(\\\\eta\\\\)</span>, wear coefficient <span>\\\\(\\\\xi\\\\)</span>, and first-order asperity angle <span>\\\\({\\\\alpha }_{0}\\\\)</span>. Both laboratory <i>CNS</i> direct shear tests and field vertical load pile tests are selected to verify the reliability of the proposed analytical model. The results indicate that the proposed analytical model can effectively reflect the variation characteristics of the shear stress-displacement curve and the normal stress-displacement curve under <i>CNS</i> conditions, and its application in the load-transfer behavior of rock-socketed piles can well predict the bearing characteristics.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03994-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03994-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Analytical solution for concrete/rock interface shearing under CNS considering interlocking effect and wear behavior and its application
Using a two-order profile to characterize the concrete/rock interface, this paper proposes an analytical solution for the shear behavior of the concrete/rock interface under constant normal stiffness (CNS), taking into account the interlocking effect and wear behavior. The interlocking effect of second-order asperities is reflected by considering the work and energy, and the analytical expression of wear behavior is obtained by geometrically decomposing the worn rock asperity into finite tiny triangles. Subsequently, the proposed analytical model, consisting of the elastic stage, the sliding stage, and the progressive damage stage, is substituted into the load-transfer governing equation, and the bearing characteristics of rock-socketed piles are figured out by taking advantage of the finite-difference method. Finally, a parametric analysis is conducted to investigate the effects of second-order asperity distribution parameter \(\eta\), wear coefficient \(\xi\), and first-order asperity angle \({\alpha }_{0}\). Both laboratory CNS direct shear tests and field vertical load pile tests are selected to verify the reliability of the proposed analytical model. The results indicate that the proposed analytical model can effectively reflect the variation characteristics of the shear stress-displacement curve and the normal stress-displacement curve under CNS conditions, and its application in the load-transfer behavior of rock-socketed piles can well predict the bearing characteristics.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.