通过硬 X 射线光电子能谱学和中子反射率测量研究等离子处理诱导的亲水和疏水硅基单体组成的无规共聚物薄膜化学变化的表面深度分析。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-11-21 DOI:10.1021/acsami.4c17393
Katsuhiro Yamamoto, Tatsuya Imai, Atsuki Kawai, Eri Ito, Tsukasa Miyazaki, Noboru Miyata, Norifumi L Yamada, Hideki Seto, Hiroyuki Aoki
{"title":"通过硬 X 射线光电子能谱学和中子反射率测量研究等离子处理诱导的亲水和疏水硅基单体组成的无规共聚物薄膜化学变化的表面深度分析。","authors":"Katsuhiro Yamamoto, Tatsuya Imai, Atsuki Kawai, Eri Ito, Tsukasa Miyazaki, Noboru Miyata, Norifumi L Yamada, Hideki Seto, Hiroyuki Aoki","doi":"10.1021/acsami.4c17393","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a silicon-based copolymer, poly(tris(trimethylsiloxy)-3-methacryloxypropylsilane)-<i>co</i>-poly(<i>N</i>,<i>N</i>-dimethyl acrylamide), thin film was subjected to plasma surface treatment to make its surface hydrophilic (biocompatible). Neutron reflectivity (NR) measurement of the plasma-treated thin film showed a decrease in the film thickness (etching width: ∼20 nm) and an increase in the scattering length density (SLD) near the surface (∼15 nm). The region with a considerably high SLD adsorbed water (D<sub>2</sub>O) from its saturated vapor, indicating its superior surface hydrophilicity. Nevertheless of the hydrophilicity, the swelling of the thin film was suppressed. Hard X-ray photoelectron spectroscopy (HAXPES) performed at various takeoff angles revealed that the thin-film surface (∼20 nm depth) underwent extensive oxidation. NR and HAXPES analysis quantitatively yielded the depth profiling of elemental compositions in a few tens of nm scale. Si oxidation and hydrogen elimination (probably CH<sub>3</sub> groups) in the vicinity of the surface region increased the SLD and decreased the hydrophobicity. A combination of Soft X-ray photoelectron spectroscopy and NR measurements revealed the surface chemical composition and mass density. It was considered that the surface near the film was chemically composed close to SiO<sub>2</sub>, forming a gel-like (three-dimensional network) structure that is hydrophilic and suppresses swelling due to moisture, indicating it can be expected to maintain stable hydrophilicity on the film surface.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Depth Analysis of Chemical Changes in Random Copolymer Thin Films Composed of Hydrophilic and Hydrophobic Silicon-Based Monomers Induced by Plasma Treatment as Studied by Hard X-ray Photoelectron Spectroscopy and Neutron Reflectivity Measurements.\",\"authors\":\"Katsuhiro Yamamoto, Tatsuya Imai, Atsuki Kawai, Eri Ito, Tsukasa Miyazaki, Noboru Miyata, Norifumi L Yamada, Hideki Seto, Hiroyuki Aoki\",\"doi\":\"10.1021/acsami.4c17393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a silicon-based copolymer, poly(tris(trimethylsiloxy)-3-methacryloxypropylsilane)-<i>co</i>-poly(<i>N</i>,<i>N</i>-dimethyl acrylamide), thin film was subjected to plasma surface treatment to make its surface hydrophilic (biocompatible). Neutron reflectivity (NR) measurement of the plasma-treated thin film showed a decrease in the film thickness (etching width: ∼20 nm) and an increase in the scattering length density (SLD) near the surface (∼15 nm). The region with a considerably high SLD adsorbed water (D<sub>2</sub>O) from its saturated vapor, indicating its superior surface hydrophilicity. Nevertheless of the hydrophilicity, the swelling of the thin film was suppressed. Hard X-ray photoelectron spectroscopy (HAXPES) performed at various takeoff angles revealed that the thin-film surface (∼20 nm depth) underwent extensive oxidation. NR and HAXPES analysis quantitatively yielded the depth profiling of elemental compositions in a few tens of nm scale. Si oxidation and hydrogen elimination (probably CH<sub>3</sub> groups) in the vicinity of the surface region increased the SLD and decreased the hydrophobicity. A combination of Soft X-ray photoelectron spectroscopy and NR measurements revealed the surface chemical composition and mass density. It was considered that the surface near the film was chemically composed close to SiO<sub>2</sub>, forming a gel-like (three-dimensional network) structure that is hydrophilic and suppresses swelling due to moisture, indicating it can be expected to maintain stable hydrophilicity on the film surface.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c17393\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17393","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究对硅基共聚物聚(三(三甲基硅氧烷)-3-甲基丙烯酰氧基丙基硅烷)-共聚(N,N-二甲基丙烯酰胺)薄膜进行了等离子体表面处理,使其表面具有亲水性(生物相容性)。对等离子处理过的薄膜进行的中子反射率(NR)测量显示,薄膜厚度减小(蚀刻宽度:∼20 nm),表面附近的散射长度密度(SLD)增大(∼15 nm)。散射长度密度相当高的区域吸附了饱和蒸汽中的水(D2O),表明其表面亲水性极佳。尽管亲水性很强,但薄膜的膨胀却受到了抑制。在不同起飞角度下进行的硬 X 射线光电子能谱分析(HAXPES)显示,薄膜表面(深度为 20 纳米)发生了广泛的氧化。NR 和 HAXPES 分析定量分析了几十纳米深度的元素组成。表面区域附近的硅氧化和氢消除(可能是 CH3 基团)增加了 SLD,降低了疏水性。软 X 射线光电子能谱和 NR 测量相结合,揭示了表面化学成分和质量密度。研究认为,薄膜附近表面的化学成分接近 SiO2,形成了凝胶状(三维网络)结构,具有亲水性并能抑制水分引起的膨胀,这表明它可望在薄膜表面保持稳定的亲水性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface Depth Analysis of Chemical Changes in Random Copolymer Thin Films Composed of Hydrophilic and Hydrophobic Silicon-Based Monomers Induced by Plasma Treatment as Studied by Hard X-ray Photoelectron Spectroscopy and Neutron Reflectivity Measurements.

In this study, a silicon-based copolymer, poly(tris(trimethylsiloxy)-3-methacryloxypropylsilane)-co-poly(N,N-dimethyl acrylamide), thin film was subjected to plasma surface treatment to make its surface hydrophilic (biocompatible). Neutron reflectivity (NR) measurement of the plasma-treated thin film showed a decrease in the film thickness (etching width: ∼20 nm) and an increase in the scattering length density (SLD) near the surface (∼15 nm). The region with a considerably high SLD adsorbed water (D2O) from its saturated vapor, indicating its superior surface hydrophilicity. Nevertheless of the hydrophilicity, the swelling of the thin film was suppressed. Hard X-ray photoelectron spectroscopy (HAXPES) performed at various takeoff angles revealed that the thin-film surface (∼20 nm depth) underwent extensive oxidation. NR and HAXPES analysis quantitatively yielded the depth profiling of elemental compositions in a few tens of nm scale. Si oxidation and hydrogen elimination (probably CH3 groups) in the vicinity of the surface region increased the SLD and decreased the hydrophobicity. A combination of Soft X-ray photoelectron spectroscopy and NR measurements revealed the surface chemical composition and mass density. It was considered that the surface near the film was chemically composed close to SiO2, forming a gel-like (three-dimensional network) structure that is hydrophilic and suppresses swelling due to moisture, indicating it can be expected to maintain stable hydrophilicity on the film surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Enhanced Low-Humidity Performance of Polymer Exchange Membrane Fuel Cells via Membrane Surface Engineering Spectrally Narrow Blue-Light Emission from Nonstoichiometric AgGaS2 Quantum Dots for Application to Light-Emitting Diodes Electrochemical Properties of Powdery LiNi1/3Mn1/3Co1/3O2 Electrodes with Styrene-Acrylic-Rubber-Based Latex Binders at High Voltage Double-Layered Electrospun Nanofiber Filter for the Simultaneous Removal of Urea and Ammonium from Blood Protective Coating for Stable Cycling of Li-Metal Batteries Based on Cellulose and Single-Ion Conducting Polymer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1