利用优先电位的潜信息预测无机材料的介电张量

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-11-21 DOI:10.1038/s41524-024-01450-z
Zetian Mao, WenWen Li, Jethro Tan
{"title":"利用优先电位的潜信息预测无机材料的介电张量","authors":"Zetian Mao, WenWen Li, Jethro Tan","doi":"10.1038/s41524-024-01450-z","DOIUrl":null,"url":null,"abstract":"<p>Dielectrics are crucial for technologies like flash memory, CPUs, photovoltaics, and capacitors, but public data on these materials are scarce, restricting research and development. Existing machine learning models have focused on predicting scalar polycrystalline dielectric constants, neglecting the directional nature of dielectric tensors essential for material design. This study leverages multi-rank equivariant structural embeddings from a universal neural network potential to enhance predictions of dielectric tensors. We develop an equivariant readout decoder to predict total, electronic, and ionic dielectric tensors while preserving O(3) equivariance, and benchmark its performance against state-of-the-art algorithms. Virtual screening of thermodynamically stable materials from Materials Project for two discovery tasks, high-dielectric and highly anisotropic materials, identifies promising candidates including Cs<sub>2</sub>Ti(WO<sub>4</sub>)<sub>3</sub> (band gap <i>E</i><sub><i>g</i></sub> = 2.93eV, dielectric constant <i>ε</i> = 180.90) and CsZrCuSe<sub>3</sub> (anisotropic ratio <i>α</i><sub><i>r</i></sub> = 121.89). The results demonstrate our model’s accuracy in predicting dielectric tensors and its potential for discovering novel dielectric materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"61 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectric tensor prediction for inorganic materials using latent information from preferred potential\",\"authors\":\"Zetian Mao, WenWen Li, Jethro Tan\",\"doi\":\"10.1038/s41524-024-01450-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dielectrics are crucial for technologies like flash memory, CPUs, photovoltaics, and capacitors, but public data on these materials are scarce, restricting research and development. Existing machine learning models have focused on predicting scalar polycrystalline dielectric constants, neglecting the directional nature of dielectric tensors essential for material design. This study leverages multi-rank equivariant structural embeddings from a universal neural network potential to enhance predictions of dielectric tensors. We develop an equivariant readout decoder to predict total, electronic, and ionic dielectric tensors while preserving O(3) equivariance, and benchmark its performance against state-of-the-art algorithms. Virtual screening of thermodynamically stable materials from Materials Project for two discovery tasks, high-dielectric and highly anisotropic materials, identifies promising candidates including Cs<sub>2</sub>Ti(WO<sub>4</sub>)<sub>3</sub> (band gap <i>E</i><sub><i>g</i></sub> = 2.93eV, dielectric constant <i>ε</i> = 180.90) and CsZrCuSe<sub>3</sub> (anisotropic ratio <i>α</i><sub><i>r</i></sub> = 121.89). The results demonstrate our model’s accuracy in predicting dielectric tensors and its potential for discovering novel dielectric materials.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01450-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01450-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电介质对闪存、CPU、光伏和电容器等技术至关重要,但有关这些材料的公开数据却很少,限制了研究和开发。现有的机器学习模型侧重于预测标量多晶介电常数,忽略了介电张量对材料设计至关重要的方向性。本研究利用通用神经网络潜能的多阶梯等变结构嵌入来增强对介电张量的预测。我们开发了一种等方差读出解码器来预测总介电张量、电子介电张量和离子介电张量,同时保持 O(3) 等方差,并将其性能与最先进的算法进行比较。针对高介电和高各向异性材料这两项发现任务,对材料项目中的热力学稳定材料进行了虚拟筛选,确定了包括 Cs2Ti(WO4)3(带隙 Eg = 2.93eV,介电常数 ε = 180.90)和 CsZrCuSe3(各向异性比 αr = 121.89)在内的有希望的候选材料。这些结果证明了我们的模型在预测介电张量方面的准确性及其发现新型介电材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dielectric tensor prediction for inorganic materials using latent information from preferred potential

Dielectrics are crucial for technologies like flash memory, CPUs, photovoltaics, and capacitors, but public data on these materials are scarce, restricting research and development. Existing machine learning models have focused on predicting scalar polycrystalline dielectric constants, neglecting the directional nature of dielectric tensors essential for material design. This study leverages multi-rank equivariant structural embeddings from a universal neural network potential to enhance predictions of dielectric tensors. We develop an equivariant readout decoder to predict total, electronic, and ionic dielectric tensors while preserving O(3) equivariance, and benchmark its performance against state-of-the-art algorithms. Virtual screening of thermodynamically stable materials from Materials Project for two discovery tasks, high-dielectric and highly anisotropic materials, identifies promising candidates including Cs2Ti(WO4)3 (band gap Eg = 2.93eV, dielectric constant ε = 180.90) and CsZrCuSe3 (anisotropic ratio αr = 121.89). The results demonstrate our model’s accuracy in predicting dielectric tensors and its potential for discovering novel dielectric materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Dielectric tensor prediction for inorganic materials using latent information from preferred potential Automated optimization and uncertainty quantification of convergence parameters in plane wave density functional theory calculations Understanding chiral charge-density wave by frozen chiral phonon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1