Chao Jia, Qirui Liu, Man Zhang, Cong Han, Xuantong Luo, Yu Zhou, Yi Liu, Liyun Zhang
{"title":"通过化学/核酸联合疗法抑制卵巢癌增殖和迁移的纳米药片工程学","authors":"Chao Jia, Qirui Liu, Man Zhang, Cong Han, Xuantong Luo, Yu Zhou, Yi Liu, Liyun Zhang","doi":"10.1002/smll.202408095","DOIUrl":null,"url":null,"abstract":"Ovarian cancer (OC) is the most fatal of all gynecological malignancies, presenting a significant threat to women's health. Its treatment is complicated by severe dose-dependent chemotherapy toxicity, drug resistance, and tumor migration. Herein, an intelligent combination strategy of chemotherapy and nucleic acid therapy, named ApMEmiR&D is developed. This integrated system consists of three parts: the nano-pill, the protective membrane, and the navigation element. Nano-pills are nanospheres assembled from miRNA and doxorubicin (DOX) with the help of ferrous ions (Fe<sup>2+</sup>). The protective membrane is derived from tumor-associated macrophages (TAMs membrane) originating from the primary tumor microenvironment (TME). The navigation element is the cholesterol-conjugated AS1411 aptamer. The resulting ApMEmiR&D nanoparticles exhibit uniform size, a well-defined nanosphere structure, robust serum stability, and ultra-high drug loading efficiency and capacity. The system can efficiently accumulate in the tumor, allowing for the synergistic inhibition of tumor growth and metastasis without apparent systemic toxicity. The results demonstrate the homing effect of tumor microenvironment-derived macrophage cell membrane and the targeting effect of aptamer, leading to precise drug targeting and immune compatibility, thereby enhancing therapeutic efficacy. The success of this strategy paves the way for metastasis inhibition and targeted cancer therapy.","PeriodicalId":228,"journal":{"name":"Small","volume":"68 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Nano-Pills to Inhibit Ovarian Cancer Proliferation and Migration through a Combination of Chemical/Nucleic Acid Therapy\",\"authors\":\"Chao Jia, Qirui Liu, Man Zhang, Cong Han, Xuantong Luo, Yu Zhou, Yi Liu, Liyun Zhang\",\"doi\":\"10.1002/smll.202408095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ovarian cancer (OC) is the most fatal of all gynecological malignancies, presenting a significant threat to women's health. Its treatment is complicated by severe dose-dependent chemotherapy toxicity, drug resistance, and tumor migration. Herein, an intelligent combination strategy of chemotherapy and nucleic acid therapy, named ApMEmiR&D is developed. This integrated system consists of three parts: the nano-pill, the protective membrane, and the navigation element. Nano-pills are nanospheres assembled from miRNA and doxorubicin (DOX) with the help of ferrous ions (Fe<sup>2+</sup>). The protective membrane is derived from tumor-associated macrophages (TAMs membrane) originating from the primary tumor microenvironment (TME). The navigation element is the cholesterol-conjugated AS1411 aptamer. The resulting ApMEmiR&D nanoparticles exhibit uniform size, a well-defined nanosphere structure, robust serum stability, and ultra-high drug loading efficiency and capacity. The system can efficiently accumulate in the tumor, allowing for the synergistic inhibition of tumor growth and metastasis without apparent systemic toxicity. The results demonstrate the homing effect of tumor microenvironment-derived macrophage cell membrane and the targeting effect of aptamer, leading to precise drug targeting and immune compatibility, thereby enhancing therapeutic efficacy. The success of this strategy paves the way for metastasis inhibition and targeted cancer therapy.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202408095\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408095","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Engineering Nano-Pills to Inhibit Ovarian Cancer Proliferation and Migration through a Combination of Chemical/Nucleic Acid Therapy
Ovarian cancer (OC) is the most fatal of all gynecological malignancies, presenting a significant threat to women's health. Its treatment is complicated by severe dose-dependent chemotherapy toxicity, drug resistance, and tumor migration. Herein, an intelligent combination strategy of chemotherapy and nucleic acid therapy, named ApMEmiR&D is developed. This integrated system consists of three parts: the nano-pill, the protective membrane, and the navigation element. Nano-pills are nanospheres assembled from miRNA and doxorubicin (DOX) with the help of ferrous ions (Fe2+). The protective membrane is derived from tumor-associated macrophages (TAMs membrane) originating from the primary tumor microenvironment (TME). The navigation element is the cholesterol-conjugated AS1411 aptamer. The resulting ApMEmiR&D nanoparticles exhibit uniform size, a well-defined nanosphere structure, robust serum stability, and ultra-high drug loading efficiency and capacity. The system can efficiently accumulate in the tumor, allowing for the synergistic inhibition of tumor growth and metastasis without apparent systemic toxicity. The results demonstrate the homing effect of tumor microenvironment-derived macrophage cell membrane and the targeting effect of aptamer, leading to precise drug targeting and immune compatibility, thereby enhancing therapeutic efficacy. The success of this strategy paves the way for metastasis inhibition and targeted cancer therapy.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.