用于可穿戴设备的可直接打印和粘性液态金属油墨

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-22 DOI:10.1002/adfm.202411647
Wenfu Chen, Qianqiang Tang, Weijie Zhong, Mengnan Lai, Shiyang Shi, Jiqian Tan, Ziqing Luo, Xurui Liu, Zhicheng Ye, Rui He, Fulong Jiang, Xuechang Zhou, Ben Wang
{"title":"用于可穿戴设备的可直接打印和粘性液态金属油墨","authors":"Wenfu Chen, Qianqiang Tang, Weijie Zhong, Mengnan Lai, Shiyang Shi, Jiqian Tan, Ziqing Luo, Xurui Liu, Zhicheng Ye, Rui He, Fulong Jiang, Xuechang Zhou, Ben Wang","doi":"10.1002/adfm.202411647","DOIUrl":null,"url":null,"abstract":"Leveraging the fluidity and excellent conductivity of liquid metal (gallium-indium alloy), liquid metal (LM) can be utilized to manufacture flexible and stretchable electronic products for applications in soft robotics, wearable devices, and human–machine interaction. However, the high surface tension and low surface adhesion of LM hinder its patterning and high-resolution fabrication of soft electronics. Here a recyclable LM-silicon dioxide (LMS) ink is proposed. Under stirring, silicon dioxide (SiO<sub>2</sub>) particles are encapsulated by the oxide layer of the LM, consuming the oxide layer. Meanwhile, gallium in the LM reacts with oxygen from the air to form a new oxide layer, enhancing the adhesion of the LM to the substrate while maintaining its conductivity. The in-situ printing of LMS ink is verified on various materials (e.g., paper, polymer, and glass) with a resolution of up to 165 µm and an exceptional conductivity of ≈6.53 × 10<sup>6</sup> S m<sup>−1</sup>. The printed patterns can be erased with an anhydrous ethanol solution, allowing the recovered LMS ink to be reused for multiple writing cycles. The general method for direct LM circuits printing can fabricate various wearable sensors for soft electronic devices and human–machine interaction.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"42 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directly Printable and Adhesive Liquid Metal Ink for Wearable Devices\",\"authors\":\"Wenfu Chen, Qianqiang Tang, Weijie Zhong, Mengnan Lai, Shiyang Shi, Jiqian Tan, Ziqing Luo, Xurui Liu, Zhicheng Ye, Rui He, Fulong Jiang, Xuechang Zhou, Ben Wang\",\"doi\":\"10.1002/adfm.202411647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leveraging the fluidity and excellent conductivity of liquid metal (gallium-indium alloy), liquid metal (LM) can be utilized to manufacture flexible and stretchable electronic products for applications in soft robotics, wearable devices, and human–machine interaction. However, the high surface tension and low surface adhesion of LM hinder its patterning and high-resolution fabrication of soft electronics. Here a recyclable LM-silicon dioxide (LMS) ink is proposed. Under stirring, silicon dioxide (SiO<sub>2</sub>) particles are encapsulated by the oxide layer of the LM, consuming the oxide layer. Meanwhile, gallium in the LM reacts with oxygen from the air to form a new oxide layer, enhancing the adhesion of the LM to the substrate while maintaining its conductivity. The in-situ printing of LMS ink is verified on various materials (e.g., paper, polymer, and glass) with a resolution of up to 165 µm and an exceptional conductivity of ≈6.53 × 10<sup>6</sup> S m<sup>−1</sup>. The printed patterns can be erased with an anhydrous ethanol solution, allowing the recovered LMS ink to be reused for multiple writing cycles. The general method for direct LM circuits printing can fabricate various wearable sensors for soft electronic devices and human–machine interaction.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202411647\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202411647","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用液态金属(镓铟合金)的流动性和出色的导电性,液态金属(LM)可用于制造柔性和可拉伸的电子产品,应用于软机器人、可穿戴设备和人机交互等领域。然而,液态金属的高表面张力和低表面附着力阻碍了其图案化和软电子产品的高分辨率制造。这里提出了一种可回收的 LM-二氧化硅(LMS)墨水。在搅拌下,二氧化硅(SiO2)颗粒被 LM 的氧化层包裹,消耗掉氧化层。同时,LM 中的镓与空气中的氧发生反应,形成新的氧化层,在保持导电性的同时增强了 LM 与基底的附着力。LMS 油墨的原位印刷在各种材料(如纸张、聚合物和玻璃)上都得到了验证,分辨率高达 165 µm,导电率高达 ≈6.53 × 106 S m-1。印刷图案可以用无水乙醇溶液擦除,回收的 LMS 墨水可重复用于多个书写周期。直接 LM 电路印刷的一般方法可以制造出各种用于软电子设备和人机交互的可穿戴传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Directly Printable and Adhesive Liquid Metal Ink for Wearable Devices
Leveraging the fluidity and excellent conductivity of liquid metal (gallium-indium alloy), liquid metal (LM) can be utilized to manufacture flexible and stretchable electronic products for applications in soft robotics, wearable devices, and human–machine interaction. However, the high surface tension and low surface adhesion of LM hinder its patterning and high-resolution fabrication of soft electronics. Here a recyclable LM-silicon dioxide (LMS) ink is proposed. Under stirring, silicon dioxide (SiO2) particles are encapsulated by the oxide layer of the LM, consuming the oxide layer. Meanwhile, gallium in the LM reacts with oxygen from the air to form a new oxide layer, enhancing the adhesion of the LM to the substrate while maintaining its conductivity. The in-situ printing of LMS ink is verified on various materials (e.g., paper, polymer, and glass) with a resolution of up to 165 µm and an exceptional conductivity of ≈6.53 × 106 S m−1. The printed patterns can be erased with an anhydrous ethanol solution, allowing the recovered LMS ink to be reused for multiple writing cycles. The general method for direct LM circuits printing can fabricate various wearable sensors for soft electronic devices and human–machine interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Advances in In Situ TEM for Dynamic Studies of Carbon-Based Anodes in Alkali Metal-Ion Batteries Synergistic Effect Enables Aqueous Zinc-Ion Batteries to Operate at High Temperatures Controllable Design of “Nested Doll” MoS2/V2O3 Heterostructures Promotes Polarization Effects for High-Efficiency Microwave Absorption Low Temperature Rapid Interfacial Kinetics Achieved by Sodium Titanate Anode Co-Intercalation Storage Mechanism and Stable Solid Electrolyte Interface Ion-Beam-Induced Biaxial Tensile Strain Engineering in Nanoscale Zinc Oxide Films on Silicon Dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1