睡眠片段导致暴露于 GCR 的雄性和雌性大鼠出现新的集合转移减少。

IF 2.5 3区 医学 Q2 BIOLOGY Radiation research Pub Date : 2024-11-22 DOI:10.1667/RADE-24-00146.1
Hui Ho Vanessa Chang, Arriyam S Fesshaye, Alyssa Tidmore, Larry D Sanford, Richard A Britten
{"title":"睡眠片段导致暴露于 GCR 的雄性和雌性大鼠出现新的集合转移减少。","authors":"Hui Ho Vanessa Chang, Arriyam S Fesshaye, Alyssa Tidmore, Larry D Sanford, Richard A Britten","doi":"10.1667/RADE-24-00146.1","DOIUrl":null,"url":null,"abstract":"<p><p>The prolonged exposure to multiple spaceflight stressors during long-duration missions to the Moon and Mars will be challenging to the physical and mental health of the astronauts. Ground-based studies have reported that attentional set-shifting task (ATSET) performance is impaired after space radiation (SR) exposure. At certain times during deep-space missions, astronauts will likely have to contend with the combined impacts of SR and sleep perturbation. In rats, poor quality, fragmented sleep adversely impacts performance in multiple cognitive tasks, including the ATSET task. While both SR and sleep perturbations independently cause cognitive performance deficits, the incidence, severity and exact nature of those decrements following combined exposure to these flight stressors is largely unknown. This study established the impact that a single night of fragmented sleep has on ATSET performance in both male and female rats exposed to 10 cGy of galactic cosmic ray simulation (GCRsim). The GCRsim beam is a complex beam that mimics the mass and energy spectra of the SR particles that an astronaut will be exposed to within the spacecraft. Rats that had no obvious ATSET performance decrements when normally rested were subjected to fragmented sleep and their ATSET performance reassessed. Sleep fragmentation resulted in significant ATSET performance decrements in GCRsim-exposed rats, with specific performance decrements being observed in stages where attention or cue shifting is extensively used. Performance decrements in these stages are rarely observed after SR exposure. While both male and female rats exhibited latent sleep-related performance decrements, these were sex dependent, with male and female rats exhibiting different types of performance decrements (either reduced processing speed or task completion efficiency) in different stages of the ATSET task. This study suggests that SR-induced cognitive impairment may not be fully evident in normally rested rats, with an underestimation of both the incidence and nature of performance decrements that could occur when multiple space flight stressors are present. These data suggest that that there may be synergistic interactions between multiple space flight stressors that may not be easily predicted from their independent actions.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sleep Fragmentation Results in Novel Set-shifting Decrements in GCR-exposed Male and Female Rats.\",\"authors\":\"Hui Ho Vanessa Chang, Arriyam S Fesshaye, Alyssa Tidmore, Larry D Sanford, Richard A Britten\",\"doi\":\"10.1667/RADE-24-00146.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prolonged exposure to multiple spaceflight stressors during long-duration missions to the Moon and Mars will be challenging to the physical and mental health of the astronauts. Ground-based studies have reported that attentional set-shifting task (ATSET) performance is impaired after space radiation (SR) exposure. At certain times during deep-space missions, astronauts will likely have to contend with the combined impacts of SR and sleep perturbation. In rats, poor quality, fragmented sleep adversely impacts performance in multiple cognitive tasks, including the ATSET task. While both SR and sleep perturbations independently cause cognitive performance deficits, the incidence, severity and exact nature of those decrements following combined exposure to these flight stressors is largely unknown. This study established the impact that a single night of fragmented sleep has on ATSET performance in both male and female rats exposed to 10 cGy of galactic cosmic ray simulation (GCRsim). The GCRsim beam is a complex beam that mimics the mass and energy spectra of the SR particles that an astronaut will be exposed to within the spacecraft. Rats that had no obvious ATSET performance decrements when normally rested were subjected to fragmented sleep and their ATSET performance reassessed. Sleep fragmentation resulted in significant ATSET performance decrements in GCRsim-exposed rats, with specific performance decrements being observed in stages where attention or cue shifting is extensively used. Performance decrements in these stages are rarely observed after SR exposure. While both male and female rats exhibited latent sleep-related performance decrements, these were sex dependent, with male and female rats exhibiting different types of performance decrements (either reduced processing speed or task completion efficiency) in different stages of the ATSET task. This study suggests that SR-induced cognitive impairment may not be fully evident in normally rested rats, with an underestimation of both the incidence and nature of performance decrements that could occur when multiple space flight stressors are present. These data suggest that that there may be synergistic interactions between multiple space flight stressors that may not be easily predicted from their independent actions.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-24-00146.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00146.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在月球和火星的长期飞行任务中,宇航员将长期暴露于多种太空飞行压力之下,这对他们的身心健康将是一个挑战。地面研究报告称,暴露于空间辐射(SR)后,注意力集合转移任务(ATSET)的表现会受到影响。在深空任务的某些时候,宇航员很可能不得不面对 SR 和睡眠干扰的综合影响。在大白鼠身上,睡眠质量差、零碎的睡眠会对包括 ATSET 任务在内的多项认知任务的表现产生不利影响。虽然SR和睡眠扰动会单独导致认知能力下降,但同时暴露于这些飞行应激源后,认知能力下降的发生率、严重程度和确切性质在很大程度上尚属未知。本研究确定了暴露于 10 cGy 银河宇宙射线模拟(GCRsim)中的雄性和雌性大鼠的单晚零碎睡眠对 ATSET 性能的影响。银河宇宙射线模拟光束是一种复杂的光束,它模拟了宇航员在航天器内将接触到的 SR 粒子的质量和能量谱。对正常休息时 ATSET 性能没有明显下降的大鼠进行睡眠片段化,并重新评估其 ATSET 性能。睡眠片段化导致暴露于 GCRsim 的大鼠的 ATSET 性能明显下降,在广泛使用注意力或线索转移的阶段观察到特定的性能下降。而在SR暴露后很少观察到这些阶段的成绩下降。虽然雄性大鼠和雌性大鼠都表现出与睡眠相关的潜在能力下降,但这些下降与性别有关,雄性大鼠和雌性大鼠在 ATSET 任务的不同阶段表现出不同类型的能力下降(处理速度下降或任务完成效率下降)。这项研究表明,SR 诱导的认知障碍在正常休息的大鼠身上可能并不完全明显,当存在多种太空飞行应激因素时,可能发生的性能下降的发生率和性质都会被低估。这些数据表明,多种太空飞行应激源之间可能存在协同作用,而这些应激源的独立作用可能不易预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sleep Fragmentation Results in Novel Set-shifting Decrements in GCR-exposed Male and Female Rats.

The prolonged exposure to multiple spaceflight stressors during long-duration missions to the Moon and Mars will be challenging to the physical and mental health of the astronauts. Ground-based studies have reported that attentional set-shifting task (ATSET) performance is impaired after space radiation (SR) exposure. At certain times during deep-space missions, astronauts will likely have to contend with the combined impacts of SR and sleep perturbation. In rats, poor quality, fragmented sleep adversely impacts performance in multiple cognitive tasks, including the ATSET task. While both SR and sleep perturbations independently cause cognitive performance deficits, the incidence, severity and exact nature of those decrements following combined exposure to these flight stressors is largely unknown. This study established the impact that a single night of fragmented sleep has on ATSET performance in both male and female rats exposed to 10 cGy of galactic cosmic ray simulation (GCRsim). The GCRsim beam is a complex beam that mimics the mass and energy spectra of the SR particles that an astronaut will be exposed to within the spacecraft. Rats that had no obvious ATSET performance decrements when normally rested were subjected to fragmented sleep and their ATSET performance reassessed. Sleep fragmentation resulted in significant ATSET performance decrements in GCRsim-exposed rats, with specific performance decrements being observed in stages where attention or cue shifting is extensively used. Performance decrements in these stages are rarely observed after SR exposure. While both male and female rats exhibited latent sleep-related performance decrements, these were sex dependent, with male and female rats exhibiting different types of performance decrements (either reduced processing speed or task completion efficiency) in different stages of the ATSET task. This study suggests that SR-induced cognitive impairment may not be fully evident in normally rested rats, with an underestimation of both the incidence and nature of performance decrements that could occur when multiple space flight stressors are present. These data suggest that that there may be synergistic interactions between multiple space flight stressors that may not be easily predicted from their independent actions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
期刊最新文献
Effect of Ultrahigh Dose Rate on Biomolecular Radiation Damage. A Million Person Study Innovation: Evaluating Cognitive Impairment and other Morbidity Outcomes from Chronic Radiation Exposure Through Linkages with the Centers for Medicaid and Medicare Services Assessment and Claims Data. Hepatic Stellate Cell-mediated Increase in CCL5 Chemokine Expression after X-ray Irradiation Determined In Vitro and In Vivo. Response of Spontaneous Oral Tumors in Canine Cancer Patients Treated with Stereotactic Body Radiation Therapy (SBRT). Survey of Changes in Absolute Lymphocyte Counts and Peripheral Immune Repertoire Diversity after External Beam Radiotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1