基于一维光子晶体的用于检测癌细胞的高性能生物传感器

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Optical and Quantum Electronics Pub Date : 2024-11-23 DOI:10.1007/s11082-024-07677-w
Md. Faysal Nayan, Md. Arif Raihan, Mahamudul Hassan Fuad, Numayer Andalib Zaman, Tanvir Ahmed, Russel Reza Mahmud
{"title":"基于一维光子晶体的用于检测癌细胞的高性能生物传感器","authors":"Md. Faysal Nayan,&nbsp;Md. Arif Raihan,&nbsp;Mahamudul Hassan Fuad,&nbsp;Numayer Andalib Zaman,&nbsp;Tanvir Ahmed,&nbsp;Russel Reza Mahmud","doi":"10.1007/s11082-024-07677-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present a novel, highly sensitive, and compact one-dimensional (1D) binary photonic crystal biosensor designed for real-time detection of malignant cells, including breast, cervical, and basal cancer cells. It utilizes a GaAs/MgF<sub>2</sub> multilayer photonic crystal with a central defect layer, which creates a resonant peak within the photonic band gap. Introducing different cancerous cell samples into the defect layer causes a shift in the resonant mode position, which correlates with the refractive index changes of the samples. Using the transfer matrix method (TMM), we analyzed the spectral properties of the structure. We investigated the effects of incident angle, defect thickness, and the number of periods on the transmittance of TE waves. Additionally, this article investigated the performance comparison between TE and TM modes. To achieve the highest sensitivity in our design, we have discussed the procedure for optimizing the biosensor parameters. At these optimized conditions, the biosensor achieves a sensitivity of 2564.83 nm/RIU, a quality factor of 2979.317, and a figure of merit (FOM) of 3612.175 RIU<sup>−1</sup>. To highlight the novelty of our work, we have compared our results with previous research in photonic biosensing, demonstrating significant improvements in sensitivity and performance.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-performance biosensor based on one-dimensional photonic crystal for the detection of cancer cells\",\"authors\":\"Md. Faysal Nayan,&nbsp;Md. Arif Raihan,&nbsp;Mahamudul Hassan Fuad,&nbsp;Numayer Andalib Zaman,&nbsp;Tanvir Ahmed,&nbsp;Russel Reza Mahmud\",\"doi\":\"10.1007/s11082-024-07677-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we present a novel, highly sensitive, and compact one-dimensional (1D) binary photonic crystal biosensor designed for real-time detection of malignant cells, including breast, cervical, and basal cancer cells. It utilizes a GaAs/MgF<sub>2</sub> multilayer photonic crystal with a central defect layer, which creates a resonant peak within the photonic band gap. Introducing different cancerous cell samples into the defect layer causes a shift in the resonant mode position, which correlates with the refractive index changes of the samples. Using the transfer matrix method (TMM), we analyzed the spectral properties of the structure. We investigated the effects of incident angle, defect thickness, and the number of periods on the transmittance of TE waves. Additionally, this article investigated the performance comparison between TE and TM modes. To achieve the highest sensitivity in our design, we have discussed the procedure for optimizing the biosensor parameters. At these optimized conditions, the biosensor achieves a sensitivity of 2564.83 nm/RIU, a quality factor of 2979.317, and a figure of merit (FOM) of 3612.175 RIU<sup>−1</sup>. To highlight the novelty of our work, we have compared our results with previous research in photonic biosensing, demonstrating significant improvements in sensitivity and performance.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"56 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-024-07677-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07677-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种新型、高灵敏度和紧凑型一维(1D)二元光子晶体生物传感器,设计用于实时检测恶性细胞,包括乳腺癌、宫颈癌和基底癌细胞。它采用了具有中心缺陷层的砷化镓/MgF2 多层光子晶体,在光子带隙内形成了一个共振峰。将不同的癌细胞样本引入缺陷层会导致共振模式位置的移动,这与样本的折射率变化相关。我们使用传递矩阵法(TMM)分析了该结构的光谱特性。我们研究了入射角、缺陷厚度和周期数对 TE 波透射率的影响。此外,本文还研究了 TE 和 TM 模式的性能比较。为了在设计中实现最高灵敏度,我们讨论了优化生物传感器参数的程序。在这些优化条件下,生物传感器的灵敏度达到了 2564.83 nm/RIU,品质因数为 2979.317,优点系数 (FOM) 为 3612.175 RIU-1。为了突出我们工作的新颖性,我们将我们的成果与之前的光子生物传感研究进行了比较,结果表明我们的灵敏度和性能都有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A high-performance biosensor based on one-dimensional photonic crystal for the detection of cancer cells

In this study, we present a novel, highly sensitive, and compact one-dimensional (1D) binary photonic crystal biosensor designed for real-time detection of malignant cells, including breast, cervical, and basal cancer cells. It utilizes a GaAs/MgF2 multilayer photonic crystal with a central defect layer, which creates a resonant peak within the photonic band gap. Introducing different cancerous cell samples into the defect layer causes a shift in the resonant mode position, which correlates with the refractive index changes of the samples. Using the transfer matrix method (TMM), we analyzed the spectral properties of the structure. We investigated the effects of incident angle, defect thickness, and the number of periods on the transmittance of TE waves. Additionally, this article investigated the performance comparison between TE and TM modes. To achieve the highest sensitivity in our design, we have discussed the procedure for optimizing the biosensor parameters. At these optimized conditions, the biosensor achieves a sensitivity of 2564.83 nm/RIU, a quality factor of 2979.317, and a figure of merit (FOM) of 3612.175 RIU−1. To highlight the novelty of our work, we have compared our results with previous research in photonic biosensing, demonstrating significant improvements in sensitivity and performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
期刊最新文献
Exploring random laser characteristics in core@ shell nano-scatter centers: trends and opportunities High sensitivity of a perfect absorber based on octagonal-star and circular ring patterned graphene metasurface Correction: Investigation on optical properties of lead-free Cs3Bi2Br9 perovskite derivative quantum dots synthesised via modified LARP method Structural, optical, surface topographical and electrical properties of transparent vanadium doped ZnO absorbing layer for photovoltaic application A high-performance biosensor based on one-dimensional photonic crystal for the detection of cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1