用于宽窗口非易失性存储器和神经形态计算的铁电 Perovskite/MoS2 沟道异质结

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-24 DOI:10.1002/adma.202414339
Haojie Xu, Fapeng Sun, Enlong Li, Wuqian Guo, Lina Hua, Ruixue Wang, Wenwu Li, Junhao Chu, Wei Liu, Junhua Luo, Zhihua Sun
{"title":"用于宽窗口非易失性存储器和神经形态计算的铁电 Perovskite/MoS2 沟道异质结","authors":"Haojie Xu, Fapeng Sun, Enlong Li, Wuqian Guo, Lina Hua, Ruixue Wang, Wenwu Li, Junhao Chu, Wei Liu, Junhua Luo, Zhihua Sun","doi":"10.1002/adma.202414339","DOIUrl":null,"url":null,"abstract":"Ferroelectric materials commonly serve as gate insulators in typical field‐effect transistors, where their polarization reversal enables effective modulation of the conductivity state of the channel material, thereby realizing non‐volatile memory. Currently, novel 2D ferroelectrics unlock new prospects in next‐generation electronics and neuromorphic computation. However, the advancement of these materials is impeded by limited selectivity and narrow memory windows. Here, new concepts of 2D ferroelectric perovskite/MoS<jats:sub>2</jats:sub> channel heterostructures field‐effect transistors are presented, in which 2D ferroelectric perovskite features customizable band structure, few‐layered ferroelectricity, and submillimeter‐size monolayer wafers. Further studies reveal that these devices exhibit unique charge polarity modulation (from <jats:italic>n</jats:italic>‐ to <jats:italic>p</jats:italic>‐type channel) and remarkable nonvolatile memory behavior, especially record‐wide hysteresis windows up to 177 V, which enables efficient imitation of biological synapses and achieves high recognition accuracy for electrocardiogram patterns. This result provides a device paradigm for future nonvolatile memory and artificial synaptic applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"21 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric Perovskite/MoS2 Channel Heterojunctions for Wide‐Window Nonvolatile Memory and Neuromorphic Computing\",\"authors\":\"Haojie Xu, Fapeng Sun, Enlong Li, Wuqian Guo, Lina Hua, Ruixue Wang, Wenwu Li, Junhao Chu, Wei Liu, Junhua Luo, Zhihua Sun\",\"doi\":\"10.1002/adma.202414339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferroelectric materials commonly serve as gate insulators in typical field‐effect transistors, where their polarization reversal enables effective modulation of the conductivity state of the channel material, thereby realizing non‐volatile memory. Currently, novel 2D ferroelectrics unlock new prospects in next‐generation electronics and neuromorphic computation. However, the advancement of these materials is impeded by limited selectivity and narrow memory windows. Here, new concepts of 2D ferroelectric perovskite/MoS<jats:sub>2</jats:sub> channel heterostructures field‐effect transistors are presented, in which 2D ferroelectric perovskite features customizable band structure, few‐layered ferroelectricity, and submillimeter‐size monolayer wafers. Further studies reveal that these devices exhibit unique charge polarity modulation (from <jats:italic>n</jats:italic>‐ to <jats:italic>p</jats:italic>‐type channel) and remarkable nonvolatile memory behavior, especially record‐wide hysteresis windows up to 177 V, which enables efficient imitation of biological synapses and achieves high recognition accuracy for electrocardiogram patterns. This result provides a device paradigm for future nonvolatile memory and artificial synaptic applications.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202414339\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414339","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁电材料通常用作典型场效应晶体管的栅极绝缘体,其极化反转可有效调节沟道材料的导电状态,从而实现非易失性存储器。目前,新型二维铁电材料为下一代电子学和神经形态计算开辟了新的前景。然而,有限的选择性和狭窄的内存窗口阻碍了这些材料的发展。本文提出了二维铁电包晶/MoS2 沟道异质结构场效应晶体管的新概念,其中二维铁电包晶具有可定制的带状结构、少层铁电性和亚毫米级单层晶片。进一步研究发现,这些器件表现出独特的电荷极性调制(从 n 型通道到 p 型通道)和显著的非易失性记忆行为,尤其是高达 177 V 的创纪录宽滞后窗口,从而能够有效地模仿生物突触,并实现心电图模式的高识别精度。这一成果为未来的非易失性存储器和人工突触应用提供了一种器件范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ferroelectric Perovskite/MoS2 Channel Heterojunctions for Wide‐Window Nonvolatile Memory and Neuromorphic Computing
Ferroelectric materials commonly serve as gate insulators in typical field‐effect transistors, where their polarization reversal enables effective modulation of the conductivity state of the channel material, thereby realizing non‐volatile memory. Currently, novel 2D ferroelectrics unlock new prospects in next‐generation electronics and neuromorphic computation. However, the advancement of these materials is impeded by limited selectivity and narrow memory windows. Here, new concepts of 2D ferroelectric perovskite/MoS2 channel heterostructures field‐effect transistors are presented, in which 2D ferroelectric perovskite features customizable band structure, few‐layered ferroelectricity, and submillimeter‐size monolayer wafers. Further studies reveal that these devices exhibit unique charge polarity modulation (from n‐ to p‐type channel) and remarkable nonvolatile memory behavior, especially record‐wide hysteresis windows up to 177 V, which enables efficient imitation of biological synapses and achieves high recognition accuracy for electrocardiogram patterns. This result provides a device paradigm for future nonvolatile memory and artificial synaptic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Cellulose Nanofiber-Supported Electrochemical Percolation of Capacitive Nanomaterials with 0D, 1D, and 2D Structures. Polymer-Formulated Nerve Growth Factor Shows Effective Therapeutic Efficacy for Cerebral Microinfarcts. Reticular Materials for Photocatalysis. Taming Prolonged Ionic Drift-Diffusion Dynamics for Brain-Inspired Computation. UNLEASH: Ultralow Nanocluster Loading of Pt via Electro-Acoustic Seasoning of Heterocatalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1