基于小样本可解释机器学习的储层评价方法

Haojiang Xi , Zhifeng Luo , Yue Guo
{"title":"基于小样本可解释机器学习的储层评价方法","authors":"Haojiang Xi ,&nbsp;Zhifeng Luo ,&nbsp;Yue Guo","doi":"10.1016/j.uncres.2024.100128","DOIUrl":null,"url":null,"abstract":"<div><div>Reservoir classification and evaluation of fractured gas reservoirs are essential for optimizing development strategies and enhancing oil and gas recovery rates. In this study, we utilized geological and engineering parameters to construct new feature dimensions and applied the K-means clustering algorithm to classify reservoirs into three categories based on unobstructed flow rates. We developed a novel machine learning framework that integrates Explainable Artificial Intelligence (XAI), Synthetic Minority Over-sampling Technique (SMOTE), and Stacking models, addressing class imbalance in small sample datasets. This framework achieved a classification accuracy of 92 %, demonstrating significant improvements over traditional methods. Through global and local interpretability analysis using SHAP values, we identified the critical features influencing the model's predictions, enhancing transparency and practicality. Using data from the Bozi-Dabei Block in the Tarim Basin, we validated the accuracy and applicability of our approach. This framework not only deepens the understanding of complex reservoir characteristics but also optimizes reservoir classification accuracy, providing robust technical support for the efficient development of unconventional oil and gas resources.</div></div>","PeriodicalId":101263,"journal":{"name":"Unconventional Resources","volume":"5 ","pages":"Article 100128"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reservoir evaluation method based on explainable machine learning with small samples\",\"authors\":\"Haojiang Xi ,&nbsp;Zhifeng Luo ,&nbsp;Yue Guo\",\"doi\":\"10.1016/j.uncres.2024.100128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reservoir classification and evaluation of fractured gas reservoirs are essential for optimizing development strategies and enhancing oil and gas recovery rates. In this study, we utilized geological and engineering parameters to construct new feature dimensions and applied the K-means clustering algorithm to classify reservoirs into three categories based on unobstructed flow rates. We developed a novel machine learning framework that integrates Explainable Artificial Intelligence (XAI), Synthetic Minority Over-sampling Technique (SMOTE), and Stacking models, addressing class imbalance in small sample datasets. This framework achieved a classification accuracy of 92 %, demonstrating significant improvements over traditional methods. Through global and local interpretability analysis using SHAP values, we identified the critical features influencing the model's predictions, enhancing transparency and practicality. Using data from the Bozi-Dabei Block in the Tarim Basin, we validated the accuracy and applicability of our approach. This framework not only deepens the understanding of complex reservoir characteristics but also optimizes reservoir classification accuracy, providing robust technical support for the efficient development of unconventional oil and gas resources.</div></div>\",\"PeriodicalId\":101263,\"journal\":{\"name\":\"Unconventional Resources\",\"volume\":\"5 \",\"pages\":\"Article 100128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unconventional Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666519024000566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unconventional Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666519024000566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

裂缝气藏的储层分类和评价对于优化开发战略和提高油气采收率至关重要。在这项研究中,我们利用地质和工程参数构建了新的特征维度,并应用 K-means 聚类算法,根据畅通流量将储层分为三类。我们开发了一种新型机器学习框架,该框架集成了可解释人工智能(XAI)、合成少数群体过度采样技术(SMOTE)和堆叠模型,解决了小样本数据集中的类不平衡问题。该框架的分类准确率达到 92%,与传统方法相比有显著提高。通过使用 SHAP 值进行全局和局部可解释性分析,我们确定了影响模型预测的关键特征,提高了透明度和实用性。利用塔里木盆地博孜-达贝区块的数据,我们验证了我们方法的准确性和适用性。该框架不仅加深了对复杂储层特征的理解,还优化了储层分类的准确性,为高效开发非常规油气资源提供了强有力的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reservoir evaluation method based on explainable machine learning with small samples
Reservoir classification and evaluation of fractured gas reservoirs are essential for optimizing development strategies and enhancing oil and gas recovery rates. In this study, we utilized geological and engineering parameters to construct new feature dimensions and applied the K-means clustering algorithm to classify reservoirs into three categories based on unobstructed flow rates. We developed a novel machine learning framework that integrates Explainable Artificial Intelligence (XAI), Synthetic Minority Over-sampling Technique (SMOTE), and Stacking models, addressing class imbalance in small sample datasets. This framework achieved a classification accuracy of 92 %, demonstrating significant improvements over traditional methods. Through global and local interpretability analysis using SHAP values, we identified the critical features influencing the model's predictions, enhancing transparency and practicality. Using data from the Bozi-Dabei Block in the Tarim Basin, we validated the accuracy and applicability of our approach. This framework not only deepens the understanding of complex reservoir characteristics but also optimizes reservoir classification accuracy, providing robust technical support for the efficient development of unconventional oil and gas resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Assessing climate strategies of major energy corporations and examining projections in relation to Paris Agreement objectives within the framework of sustainable energy Reservoir evaluation method based on explainable machine learning with small samples Thermodynamic analysis for definition of low-potential heat sources The influence of pore throat heterogeneity and fractal characteristics on reservoir quality: A case study of chang 8 member tight sandstones, Ordos Basin Transitioning to sustainable economic resilience through renewable energy and green hydrogen: The case of Iraq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1