直接观察结构紊乱对二氧化铱纳米晶体溶解的影响

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-11-26 DOI:10.1016/j.matt.2024.11.003
Matteo Fratarcangeli, S. Avery Vigil, Ziqing Lin, Conner J. Soderstedt, Ivan A. Moreno-Hernandez
{"title":"直接观察结构紊乱对二氧化铱纳米晶体溶解的影响","authors":"Matteo Fratarcangeli, S. Avery Vigil, Ziqing Lin, Conner J. Soderstedt, Ivan A. Moreno-Hernandez","doi":"10.1016/j.matt.2024.11.003","DOIUrl":null,"url":null,"abstract":"The current state-of-the-art electrocatalyst for the oxygen evolution reaction (OER) is iridium dioxide, providing a compromise between activity and stability. The low elemental abundance of iridium, coupled with the dissolution of iridium dioxide under operating conditions, prevents the global-scale implementation of electrolyzers. Understanding the origin of iridium dioxide dissolution at the nanoscale is crucial for the development of next-generation electrocatalysts that efficiently utilize iridium to meet energy demands. Herein, we report the influence of structural disorder, modulated by synthesis temperature, on the nanoscale dissolution dynamics and electrocatalytic activity of iridium dioxide nanocrystals. Our observations of dissolution on single nanocrystals revealed that structural disorder destabilized the OER-inactive (111) facets and had no substantial effect on the stability of the OER-active (110) facets. These findings highlight the importance of understanding nanoscale dynamic restructuring and suggest the possibility of developing highly active and stable (110)-based iridium dioxide electrocatalysts for water oxidation.","PeriodicalId":388,"journal":{"name":"Matter","volume":"17 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct observation of structural disorder effects on iridium dioxide nanocrystal dissolution\",\"authors\":\"Matteo Fratarcangeli, S. Avery Vigil, Ziqing Lin, Conner J. Soderstedt, Ivan A. Moreno-Hernandez\",\"doi\":\"10.1016/j.matt.2024.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current state-of-the-art electrocatalyst for the oxygen evolution reaction (OER) is iridium dioxide, providing a compromise between activity and stability. The low elemental abundance of iridium, coupled with the dissolution of iridium dioxide under operating conditions, prevents the global-scale implementation of electrolyzers. Understanding the origin of iridium dioxide dissolution at the nanoscale is crucial for the development of next-generation electrocatalysts that efficiently utilize iridium to meet energy demands. Herein, we report the influence of structural disorder, modulated by synthesis temperature, on the nanoscale dissolution dynamics and electrocatalytic activity of iridium dioxide nanocrystals. Our observations of dissolution on single nanocrystals revealed that structural disorder destabilized the OER-inactive (111) facets and had no substantial effect on the stability of the OER-active (110) facets. These findings highlight the importance of understanding nanoscale dynamic restructuring and suggest the possibility of developing highly active and stable (110)-based iridium dioxide electrocatalysts for water oxidation.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2024.11.003\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.11.003","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前最先进的氧进化反应(OER)电催化剂是二氧化铱,它是活性和稳定性之间的折衷方案。由于铱的元素丰度较低,加上二氧化铱在工作条件下会溶解,因此无法在全球范围内使用电解槽。了解二氧化铱在纳米尺度上溶解的起源,对于开发新一代电催化剂,有效利用铱来满足能源需求至关重要。在此,我们报告了受合成温度调节的结构紊乱对二氧化铱纳米晶体的纳米级溶解动力学和电催化活性的影响。我们对单个纳米晶体的溶解观察发现,结构紊乱破坏了OER-非活性(111)面的稳定性,而对OER-活性(110)面的稳定性没有实质性影响。这些发现凸显了了解纳米级动态结构重组的重要性,并提出了开发高活性、高稳定性 (110) 型二氧化铱水氧化电催化剂的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct observation of structural disorder effects on iridium dioxide nanocrystal dissolution
The current state-of-the-art electrocatalyst for the oxygen evolution reaction (OER) is iridium dioxide, providing a compromise between activity and stability. The low elemental abundance of iridium, coupled with the dissolution of iridium dioxide under operating conditions, prevents the global-scale implementation of electrolyzers. Understanding the origin of iridium dioxide dissolution at the nanoscale is crucial for the development of next-generation electrocatalysts that efficiently utilize iridium to meet energy demands. Herein, we report the influence of structural disorder, modulated by synthesis temperature, on the nanoscale dissolution dynamics and electrocatalytic activity of iridium dioxide nanocrystals. Our observations of dissolution on single nanocrystals revealed that structural disorder destabilized the OER-inactive (111) facets and had no substantial effect on the stability of the OER-active (110) facets. These findings highlight the importance of understanding nanoscale dynamic restructuring and suggest the possibility of developing highly active and stable (110)-based iridium dioxide electrocatalysts for water oxidation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Manipulating multimetallic effects: Programming size-tailored metal aerogels as self-standing electrocatalysts Direct observation of structural disorder effects on iridium dioxide nanocrystal dissolution A ferroelectric living interface for fine-tuned exosome secretion toward physiology-mimetic neurovascular remodeling Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback Massively multiplexed optical recording with polychromatic DNA frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1