{"title":"针对紧凑型天线阵列的阻抗耦合和场耦合超指向波束成形方法","authors":"Liangcheng Han;Haifan Yin;Mengying Gao;Jingcheng Xie","doi":"10.1109/OJCOMS.2024.3497985","DOIUrl":null,"url":null,"abstract":"In most multiple-input multiple-output (MIMO) communication systems, antennas are spaced at least half a wavelength apart to reduce mutual coupling. In this configuration, the maximum array gain is equal to the number of antennas. However, when the antenna spacing is significantly reduced, the array gain of a compact array can become proportional to the square of the number of antennas, greatly exceeding that of traditional MIMO systems. Achieving this “superdirectivity” requires complex calculations of the excitation coefficients (beamforming vector), which is a challenging task. In this paper, we address this problem with a novel double coupling-based superdirective beamforming method. In particular, we categorize the antenna coupling effects to impedance coupling and field coupling. By characterizing these two coupling in model, we derive the beamforming vector for superdirective arrays. We prove that the field coupling matrix has the unique solution for an antenna array, and itself has the ability to fully characterize the distorted coupling field. Based on this proven theorem, we propose a method that accurately calculates the coupling matrix using only a number of angle sampling points on the order of the number of antennas. Moreover, a prototype of an independently-controlled superdirective antenna array is developed. Full-wave electromagnetic simulations and real-world experiments validate the effectiveness of our proposed approaches, and superdirectivity is achieved in reality by a compact array with 4 and 8 dipole antennas.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7262-7277"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10753354","citationCount":"0","resultStr":"{\"title\":\"A Superdirective Beamforming Approach With Impedance Coupling and Field Coupling for Compact Antenna Arrays\",\"authors\":\"Liangcheng Han;Haifan Yin;Mengying Gao;Jingcheng Xie\",\"doi\":\"10.1109/OJCOMS.2024.3497985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In most multiple-input multiple-output (MIMO) communication systems, antennas are spaced at least half a wavelength apart to reduce mutual coupling. In this configuration, the maximum array gain is equal to the number of antennas. However, when the antenna spacing is significantly reduced, the array gain of a compact array can become proportional to the square of the number of antennas, greatly exceeding that of traditional MIMO systems. Achieving this “superdirectivity” requires complex calculations of the excitation coefficients (beamforming vector), which is a challenging task. In this paper, we address this problem with a novel double coupling-based superdirective beamforming method. In particular, we categorize the antenna coupling effects to impedance coupling and field coupling. By characterizing these two coupling in model, we derive the beamforming vector for superdirective arrays. We prove that the field coupling matrix has the unique solution for an antenna array, and itself has the ability to fully characterize the distorted coupling field. Based on this proven theorem, we propose a method that accurately calculates the coupling matrix using only a number of angle sampling points on the order of the number of antennas. Moreover, a prototype of an independently-controlled superdirective antenna array is developed. Full-wave electromagnetic simulations and real-world experiments validate the effectiveness of our proposed approaches, and superdirectivity is achieved in reality by a compact array with 4 and 8 dipole antennas.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"5 \",\"pages\":\"7262-7277\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10753354\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10753354/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10753354/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Superdirective Beamforming Approach With Impedance Coupling and Field Coupling for Compact Antenna Arrays
In most multiple-input multiple-output (MIMO) communication systems, antennas are spaced at least half a wavelength apart to reduce mutual coupling. In this configuration, the maximum array gain is equal to the number of antennas. However, when the antenna spacing is significantly reduced, the array gain of a compact array can become proportional to the square of the number of antennas, greatly exceeding that of traditional MIMO systems. Achieving this “superdirectivity” requires complex calculations of the excitation coefficients (beamforming vector), which is a challenging task. In this paper, we address this problem with a novel double coupling-based superdirective beamforming method. In particular, we categorize the antenna coupling effects to impedance coupling and field coupling. By characterizing these two coupling in model, we derive the beamforming vector for superdirective arrays. We prove that the field coupling matrix has the unique solution for an antenna array, and itself has the ability to fully characterize the distorted coupling field. Based on this proven theorem, we propose a method that accurately calculates the coupling matrix using only a number of angle sampling points on the order of the number of antennas. Moreover, a prototype of an independently-controlled superdirective antenna array is developed. Full-wave electromagnetic simulations and real-world experiments validate the effectiveness of our proposed approaches, and superdirectivity is achieved in reality by a compact array with 4 and 8 dipole antennas.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.