基于确定性粒子的微宏观粘弹性流动方案

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Physics Pub Date : 2024-11-19 DOI:10.1016/j.jcp.2024.113589
Xuelian Bao , Chun Liu , Yiwei Wang
{"title":"基于确定性粒子的微宏观粘弹性流动方案","authors":"Xuelian Bao ,&nbsp;Chun Liu ,&nbsp;Yiwei Wang","doi":"10.1016/j.jcp.2024.113589","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we introduce a new method for discretizing micro-macro models of dilute polymeric fluids by integrating a finite element method (FEM) discretization for the macroscopic fluid dynamics equation with a deterministic variational particle scheme for the microscopic Fokker-Planck equation. To address challenges arising from micro-macro coupling, we employ a discrete energetic variational approach to derive a coarse-grained micro-macro model with a particle approximation first and then develop a particle-FEM discretization for the coarse-grained model. The accuracy of the proposed method is evaluated for a Hookean dumbbell model in a Couette flow by comparing the computed velocity field with existing analytical solutions. We also use our method to study nonlinear FENE dumbbell models in different scenarios, such as extensional flow, pure shear flow, and lid-driven cavity flow. Numerical examples demonstrate that the proposed deterministic particle approach can accurately capture the various key rheological phenomena in the original FENE model, including hysteresis and <em>δ</em>-function-like spike behavior in extensional flows, velocity overshoot phenomenon in pure shear flows, symmetries breaking, vortex center shifting, and vortices weakening in lid-driven cavity flows, with a small number of particles.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"522 ","pages":"Article 113589"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deterministic–particle–based scheme for micro-macro viscoelastic flows\",\"authors\":\"Xuelian Bao ,&nbsp;Chun Liu ,&nbsp;Yiwei Wang\",\"doi\":\"10.1016/j.jcp.2024.113589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we introduce a new method for discretizing micro-macro models of dilute polymeric fluids by integrating a finite element method (FEM) discretization for the macroscopic fluid dynamics equation with a deterministic variational particle scheme for the microscopic Fokker-Planck equation. To address challenges arising from micro-macro coupling, we employ a discrete energetic variational approach to derive a coarse-grained micro-macro model with a particle approximation first and then develop a particle-FEM discretization for the coarse-grained model. The accuracy of the proposed method is evaluated for a Hookean dumbbell model in a Couette flow by comparing the computed velocity field with existing analytical solutions. We also use our method to study nonlinear FENE dumbbell models in different scenarios, such as extensional flow, pure shear flow, and lid-driven cavity flow. Numerical examples demonstrate that the proposed deterministic particle approach can accurately capture the various key rheological phenomena in the original FENE model, including hysteresis and <em>δ</em>-function-like spike behavior in extensional flows, velocity overshoot phenomenon in pure shear flows, symmetries breaking, vortex center shifting, and vortices weakening in lid-driven cavity flows, with a small number of particles.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"522 \",\"pages\":\"Article 113589\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008374\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008374","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种新方法,通过将宏观流体动力学方程的有限元法(FEM)离散化与微观福克-普朗克方程的确定性变分粒子方案相结合,对稀聚合物流体的微观-宏观模型进行离散化。为了应对微观-宏观耦合带来的挑战,我们采用离散能量变分法,首先用粒子近似推导出粗粒度的微观-宏观模型,然后为粗粒度模型开发粒子-有限元离散法。通过将计算出的速度场与现有的分析解进行比较,我们对库特流中的胡肯哑铃模型评估了所提方法的准确性。我们还使用我们的方法研究了不同情况下的非线性 FENE 哑铃模型,如伸展流、纯剪切流和盖子驱动的空腔流。数值示例表明,所提出的确定性粒子方法可以准确捕捉原始 FENE 模型中的各种关键流变现象,包括伸展流中的滞后和类似 δ 函数的尖峰行为、纯剪切流中的速度过冲现象、对称性破坏、涡旋中心偏移以及顶盖驱动空腔流中的涡旋减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A deterministic–particle–based scheme for micro-macro viscoelastic flows
In this article, we introduce a new method for discretizing micro-macro models of dilute polymeric fluids by integrating a finite element method (FEM) discretization for the macroscopic fluid dynamics equation with a deterministic variational particle scheme for the microscopic Fokker-Planck equation. To address challenges arising from micro-macro coupling, we employ a discrete energetic variational approach to derive a coarse-grained micro-macro model with a particle approximation first and then develop a particle-FEM discretization for the coarse-grained model. The accuracy of the proposed method is evaluated for a Hookean dumbbell model in a Couette flow by comparing the computed velocity field with existing analytical solutions. We also use our method to study nonlinear FENE dumbbell models in different scenarios, such as extensional flow, pure shear flow, and lid-driven cavity flow. Numerical examples demonstrate that the proposed deterministic particle approach can accurately capture the various key rheological phenomena in the original FENE model, including hysteresis and δ-function-like spike behavior in extensional flows, velocity overshoot phenomenon in pure shear flows, symmetries breaking, vortex center shifting, and vortices weakening in lid-driven cavity flows, with a small number of particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
期刊最新文献
Conservative, bounded, and nonlinear discretization of the Cahn-Hilliard-Navier-Stokes equations Adjoint-based goal-oriented implicit shock tracking using full space mesh optimization A double-layer non-hydrostatic model for simulating wave-structure and wave-jet interactions Strongly stable dual-pairing summation by parts finite difference schemes for the vector invariant nonlinear shallow water equations – I: Numerical scheme and validation on the plane Parallel primal-dual active-set algorithm with nonlinear and linear preconditioners
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1