制备用于混合超级电容器的阴极 Bi2S3-rGO 纳米复合材料电极以提高储能性能

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Materials Science in Semiconductor Processing Pub Date : 2024-11-27 DOI:10.1016/j.mssp.2024.109164
S. Suganya , M. Aparna , G. Janani , S. Sambasivam , Aboud Ahmed Awadh Bahajjaj , Fen Ran , S. Sudhahar
{"title":"制备用于混合超级电容器的阴极 Bi2S3-rGO 纳米复合材料电极以提高储能性能","authors":"S. Suganya ,&nbsp;M. Aparna ,&nbsp;G. Janani ,&nbsp;S. Sambasivam ,&nbsp;Aboud Ahmed Awadh Bahajjaj ,&nbsp;Fen Ran ,&nbsp;S. Sudhahar","doi":"10.1016/j.mssp.2024.109164","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the two-dimensional Bi<sub>2</sub>S<sub>3</sub>-rGO nanocomposites have been successfully prepared through facile hydrothermal-assisted ultrasonication technique. The synthesized samples have been characterized for XRD, Raman, FESEM, EDX, HRTEM, SAED, XPS, and BET studies for studying their structure, vibrations, morphologies, purity, and chemical states. The CV analysis have been studied for fabricated Bi<sub>2</sub>S<sub>3</sub> and Bi<sub>2</sub>S<sub>3</sub>-rGO NCs electrodes in three-electrode technique, in which the Bi<sub>2</sub>S<sub>3</sub>-rGO NCs electrode exhibits 247.8 C/g of excellent specific capacities in contrast to Bi<sub>2</sub>S<sub>3</sub> electrode (76.0 C/g) at the appropriate scan rate of 10 mV/s, due to the synergistic effects of both Bi<sub>2</sub>S<sub>3</sub> and rGO in hybrid electrode. The Bi<sub>2</sub>S<sub>3</sub>-rGO NCs electrode shows 296.7 C/g of total (<span><math><mrow><msubsup><mi>Q</mi><mi>T</mi><msup><mo>∗</mo><mo>′</mo></msup></msubsup><mo>)</mo></mrow></math></span>, 171.6 C/g of inner (<span><math><mrow><msubsup><mi>Q</mi><mi>I</mi><msup><mo>∗</mo><mo>′</mo></msup></msubsup><mo>)</mo></mrow></math></span>, and 125.0 C/g of outer (<span><math><mrow><msubsup><mi>Q</mi><mi>O</mi><msup><mo>∗</mo><mo>′</mo></msup></msubsup><mo>)</mo></mrow></math></span> specific capacities from Trasatti analysis. The EIS study provides the R<sub>s</sub> and R<sub>ct</sub> values of 0.65 and 1.30 Ω for Bi<sub>2</sub>S<sub>3</sub>-rGO NCs electrode, suggesting their good ion transportation characteristics. Also, the cyclic stability has been studied for Bi<sub>2</sub>S<sub>3</sub>-rGO NCs electrode and it provides 84.03 % of good capacitive retention and 104.31 % of coulombic efficiency over 3000 cycles. Additionally, the hybrid supercapacitor device (HSC) of Bi<sub>2</sub>S<sub>3</sub>-rGO//AC has been fabricated, which shows 110.1 C/g of specific capacity, 25.8 Wh/kg of energy density (<span><math><mrow><msub><mi>E</mi><mtext>HSC</mtext></msub></mrow></math></span>), and 844.9 W/kg of power density (<span><math><mrow><msub><mi>P</mi><mtext>HSC</mtext></msub></mrow></math></span>) at 1 A/g current density. Further, the fabricated device exhibits 86.3 % better capacitive retention and a coulombic efficiency (<span><math><mrow><mi>η</mi></mrow></math></span>) of 100.1 % at the current density of 10 A/g over 10,000 GCD cycles.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109164"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of cathode Bi2S3-rGO nanocomposites electrode for hybrid supercapacitors to enhance the energy storage properties\",\"authors\":\"S. Suganya ,&nbsp;M. Aparna ,&nbsp;G. Janani ,&nbsp;S. Sambasivam ,&nbsp;Aboud Ahmed Awadh Bahajjaj ,&nbsp;Fen Ran ,&nbsp;S. Sudhahar\",\"doi\":\"10.1016/j.mssp.2024.109164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, the two-dimensional Bi<sub>2</sub>S<sub>3</sub>-rGO nanocomposites have been successfully prepared through facile hydrothermal-assisted ultrasonication technique. The synthesized samples have been characterized for XRD, Raman, FESEM, EDX, HRTEM, SAED, XPS, and BET studies for studying their structure, vibrations, morphologies, purity, and chemical states. The CV analysis have been studied for fabricated Bi<sub>2</sub>S<sub>3</sub> and Bi<sub>2</sub>S<sub>3</sub>-rGO NCs electrodes in three-electrode technique, in which the Bi<sub>2</sub>S<sub>3</sub>-rGO NCs electrode exhibits 247.8 C/g of excellent specific capacities in contrast to Bi<sub>2</sub>S<sub>3</sub> electrode (76.0 C/g) at the appropriate scan rate of 10 mV/s, due to the synergistic effects of both Bi<sub>2</sub>S<sub>3</sub> and rGO in hybrid electrode. The Bi<sub>2</sub>S<sub>3</sub>-rGO NCs electrode shows 296.7 C/g of total (<span><math><mrow><msubsup><mi>Q</mi><mi>T</mi><msup><mo>∗</mo><mo>′</mo></msup></msubsup><mo>)</mo></mrow></math></span>, 171.6 C/g of inner (<span><math><mrow><msubsup><mi>Q</mi><mi>I</mi><msup><mo>∗</mo><mo>′</mo></msup></msubsup><mo>)</mo></mrow></math></span>, and 125.0 C/g of outer (<span><math><mrow><msubsup><mi>Q</mi><mi>O</mi><msup><mo>∗</mo><mo>′</mo></msup></msubsup><mo>)</mo></mrow></math></span> specific capacities from Trasatti analysis. The EIS study provides the R<sub>s</sub> and R<sub>ct</sub> values of 0.65 and 1.30 Ω for Bi<sub>2</sub>S<sub>3</sub>-rGO NCs electrode, suggesting their good ion transportation characteristics. Also, the cyclic stability has been studied for Bi<sub>2</sub>S<sub>3</sub>-rGO NCs electrode and it provides 84.03 % of good capacitive retention and 104.31 % of coulombic efficiency over 3000 cycles. Additionally, the hybrid supercapacitor device (HSC) of Bi<sub>2</sub>S<sub>3</sub>-rGO//AC has been fabricated, which shows 110.1 C/g of specific capacity, 25.8 Wh/kg of energy density (<span><math><mrow><msub><mi>E</mi><mtext>HSC</mtext></msub></mrow></math></span>), and 844.9 W/kg of power density (<span><math><mrow><msub><mi>P</mi><mtext>HSC</mtext></msub></mrow></math></span>) at 1 A/g current density. Further, the fabricated device exhibits 86.3 % better capacitive retention and a coulombic efficiency (<span><math><mrow><mi>η</mi></mrow></math></span>) of 100.1 % at the current density of 10 A/g over 10,000 GCD cycles.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"187 \",\"pages\":\"Article 109164\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800124010606\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124010606","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用简便的水热辅助超声技术成功制备了二维 Bi2S3-rGO 纳米复合材料。对合成的样品进行了 XRD、拉曼、FESEM、EDX、HRTEM、SAED、XPS 和 BET 表征,以研究其结构、振动、形貌、纯度和化学状态。在三电极技术中,对制备的 Bi2S3 和 Bi2S3-rGO NCs 电极进行了 CV 分析,结果表明,与 Bi2S3 电极(76.0 C/g)相比,Bi2S3-rGO NCs 电极在 10 mV/s 的适当扫描速率下显示出 247.8 C/g 的优异比容量,这归功于混合电极中 Bi2S3 和 rGO 的协同效应。根据 Trasatti 分析,Bi2S3-rGO NCs 电极的总比容量(QT∗′)为 296.7 C/g,内比容量(QI∗′)为 171.6 C/g,外比容量(QO∗′)为 125.0 C/g。通过 EIS 研究,Bi2S3-rGO NCs 电极的 Rs 值为 0.65 Ω,Rct 值为 1.30 Ω,这表明它们具有良好的离子传输特性。此外,还对 Bi2S3-rGO NCs 电极的循环稳定性进行了研究,结果表明该电极在 3000 次循环中的电容保持率为 84.03%,库仑效率为 104.31%。此外,还制作了 Bi2S3-rGO//AC 混合超级电容器器件(HSC),在 1 A/g 电流密度下,比容量为 110.1 C/g,能量密度(EHSC)为 25.8 Wh/kg,功率密度(PHSC)为 844.9 W/kg。此外,在 10 A/g 的电流密度下,该器件的电容保持率提高了 86.3%,库仑效率 (η) 在 10,000 次 GCD 循环中达到 100.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of cathode Bi2S3-rGO nanocomposites electrode for hybrid supercapacitors to enhance the energy storage properties
In this work, the two-dimensional Bi2S3-rGO nanocomposites have been successfully prepared through facile hydrothermal-assisted ultrasonication technique. The synthesized samples have been characterized for XRD, Raman, FESEM, EDX, HRTEM, SAED, XPS, and BET studies for studying their structure, vibrations, morphologies, purity, and chemical states. The CV analysis have been studied for fabricated Bi2S3 and Bi2S3-rGO NCs electrodes in three-electrode technique, in which the Bi2S3-rGO NCs electrode exhibits 247.8 C/g of excellent specific capacities in contrast to Bi2S3 electrode (76.0 C/g) at the appropriate scan rate of 10 mV/s, due to the synergistic effects of both Bi2S3 and rGO in hybrid electrode. The Bi2S3-rGO NCs electrode shows 296.7 C/g of total (QT), 171.6 C/g of inner (QI), and 125.0 C/g of outer (QO) specific capacities from Trasatti analysis. The EIS study provides the Rs and Rct values of 0.65 and 1.30 Ω for Bi2S3-rGO NCs electrode, suggesting their good ion transportation characteristics. Also, the cyclic stability has been studied for Bi2S3-rGO NCs electrode and it provides 84.03 % of good capacitive retention and 104.31 % of coulombic efficiency over 3000 cycles. Additionally, the hybrid supercapacitor device (HSC) of Bi2S3-rGO//AC has been fabricated, which shows 110.1 C/g of specific capacity, 25.8 Wh/kg of energy density (EHSC), and 844.9 W/kg of power density (PHSC) at 1 A/g current density. Further, the fabricated device exhibits 86.3 % better capacitive retention and a coulombic efficiency (η) of 100.1 % at the current density of 10 A/g over 10,000 GCD cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
期刊最新文献
Designing ZrO2-blended nanocomposite MIM capacitors for future OFET applications and their characterizations Electrochemically enzyme-free detection of lactic acid in human sweat using magnesium organic framework@carbon nanofiber composite Hydrogen behavior and microstructural evolution in flexible IGZO thin films under stress Bundling effect of semiconductor-enriched single-walled carbon nanotube networks on field-effect transistor performance Dual-function efficient hydrogen evolution reaction electrocatalyst and electrode material for supercapacitors based on ternary composite FeS2/Fe2O3/MoS2 nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1