Arsh Ismaili, Gurwinder Singh, CI Sathish, Kavitha Ramadass, Vinay Naral, Stalin Joseph, Mercy Benzigar, Muhammad Ibrar Ahmed, Ajayan Vinu
{"title":"用于二氧化碳转化的功能化介孔材料的最新进展","authors":"Arsh Ismaili, Gurwinder Singh, CI Sathish, Kavitha Ramadass, Vinay Naral, Stalin Joseph, Mercy Benzigar, Muhammad Ibrar Ahmed, Ajayan Vinu","doi":"10.1016/j.mtcata.2024.100077","DOIUrl":null,"url":null,"abstract":"<div><div>Mesoporous materials are flourishing across every major research discipline, including carbon capture and conversion, energy storage, biomedical, photocatalysis, optics, and magnetics, and their promising potential has led to a flurry of publications. Among these applications, CO<sub>2</sub> conversion using porous heterogeneous catalysts such as zeolites, clays, and mesoporous materials gained much attention in recent years as it has the potential to offer a solution for global warming. Although various porous catalysts have been used for CO<sub>2</sub> conversion, mesoporous materials are particularly interesting owing to their large specific surface area, pore volume and pore diameter. These properties can be effectively utilized for creating unique catalytically active sites by loading metal or metal oxide species with high dispersion which are highly critical for efficient CO<sub>2</sub> conversion. There have also been a significant number of reports on the direct use of mesoporous metal oxides, sulfides and/or phosphides, which exhibit appealing results for CO<sub>2</sub> conversion as these inherently contain metal sites, and mesoporosity addition to them is an added advantage. Their continuous evolution warrants more sophisticated research to unveil their hidden properties by engaging in highly advanced characterization. The major emphasis of this review is to discuss various types of mesoporous materials mentioned above and their functionalized derivatives for CO<sub>2</sub> conversion to mainly C1 products. The diverse range of mesoporous materials covered in this review will provide the readers with the opportunity to delve into their specific properties that control the efficiency of CO<sub>2</sub> conversion.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"7 ","pages":"Article 100077"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent developments in functionalized mesoporous materials for CO2 conversion\",\"authors\":\"Arsh Ismaili, Gurwinder Singh, CI Sathish, Kavitha Ramadass, Vinay Naral, Stalin Joseph, Mercy Benzigar, Muhammad Ibrar Ahmed, Ajayan Vinu\",\"doi\":\"10.1016/j.mtcata.2024.100077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mesoporous materials are flourishing across every major research discipline, including carbon capture and conversion, energy storage, biomedical, photocatalysis, optics, and magnetics, and their promising potential has led to a flurry of publications. Among these applications, CO<sub>2</sub> conversion using porous heterogeneous catalysts such as zeolites, clays, and mesoporous materials gained much attention in recent years as it has the potential to offer a solution for global warming. Although various porous catalysts have been used for CO<sub>2</sub> conversion, mesoporous materials are particularly interesting owing to their large specific surface area, pore volume and pore diameter. These properties can be effectively utilized for creating unique catalytically active sites by loading metal or metal oxide species with high dispersion which are highly critical for efficient CO<sub>2</sub> conversion. There have also been a significant number of reports on the direct use of mesoporous metal oxides, sulfides and/or phosphides, which exhibit appealing results for CO<sub>2</sub> conversion as these inherently contain metal sites, and mesoporosity addition to them is an added advantage. Their continuous evolution warrants more sophisticated research to unveil their hidden properties by engaging in highly advanced characterization. The major emphasis of this review is to discuss various types of mesoporous materials mentioned above and their functionalized derivatives for CO<sub>2</sub> conversion to mainly C1 products. The diverse range of mesoporous materials covered in this review will provide the readers with the opportunity to delve into their specific properties that control the efficiency of CO<sub>2</sub> conversion.</div></div>\",\"PeriodicalId\":100892,\"journal\":{\"name\":\"Materials Today Catalysis\",\"volume\":\"7 \",\"pages\":\"Article 100077\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949754X24000395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X24000395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
介孔材料在碳捕获与转化、能量存储、生物医学、光催化、光学和磁学等各个主要研究学科中都得到了蓬勃发展,其巨大潜力已引发大量论文发表。在这些应用中,使用多孔异质催化剂(如沸石、粘土和介孔材料)进行二氧化碳转化近年来备受关注,因为它有可能为全球变暖提供解决方案。虽然各种多孔催化剂已被用于二氧化碳转化,但介孔材料因其较大的比表面积、孔体积和孔直径而尤其引人关注。可以有效利用这些特性,通过装载高分散度的金属或金属氧化物来创建独特的催化活性位点,这对于高效的二氧化碳转化非常关键。此外,还有大量关于直接使用介孔金属氧化物、硫化物和/或磷化物的报道,由于这些物质本身含有金属位点,因此在二氧化碳转化方面表现出令人满意的效果,而添加介孔也是一个额外的优势。它们的不断发展需要进行更复杂的研究,通过高度先进的表征揭示其隐藏的特性。本综述的主要重点是讨论上述各种类型的介孔材料及其功能化衍生物,用于将 CO2 转化为主要是 C1 产物。本综述中涉及的各种介孔材料将为读者提供机会,深入探讨它们控制二氧化碳转化效率的具体特性。
Recent developments in functionalized mesoporous materials for CO2 conversion
Mesoporous materials are flourishing across every major research discipline, including carbon capture and conversion, energy storage, biomedical, photocatalysis, optics, and magnetics, and their promising potential has led to a flurry of publications. Among these applications, CO2 conversion using porous heterogeneous catalysts such as zeolites, clays, and mesoporous materials gained much attention in recent years as it has the potential to offer a solution for global warming. Although various porous catalysts have been used for CO2 conversion, mesoporous materials are particularly interesting owing to their large specific surface area, pore volume and pore diameter. These properties can be effectively utilized for creating unique catalytically active sites by loading metal or metal oxide species with high dispersion which are highly critical for efficient CO2 conversion. There have also been a significant number of reports on the direct use of mesoporous metal oxides, sulfides and/or phosphides, which exhibit appealing results for CO2 conversion as these inherently contain metal sites, and mesoporosity addition to them is an added advantage. Their continuous evolution warrants more sophisticated research to unveil their hidden properties by engaging in highly advanced characterization. The major emphasis of this review is to discuss various types of mesoporous materials mentioned above and their functionalized derivatives for CO2 conversion to mainly C1 products. The diverse range of mesoporous materials covered in this review will provide the readers with the opportunity to delve into their specific properties that control the efficiency of CO2 conversion.