Xinzhi Li, Mugong Zhang, Xuewei Fang, Xiaochuan Liu, You Zhou, Tianxing Chang, Ke Huang
{"title":"线弧定向能沉积 GWZ1021K 合金超高强度的起源","authors":"Xinzhi Li, Mugong Zhang, Xuewei Fang, Xiaochuan Liu, You Zhou, Tianxing Chang, Ke Huang","doi":"10.1016/j.jma.2024.11.011","DOIUrl":null,"url":null,"abstract":"Research on the preparation of over-sized lightweight magnesium rare-earth (Mg-RE) components using the wire-arc directed energy deposition (WA-DED) is progressively gaining attention in the advanced manufacturing fields. Herein, to satisfy the demand of ultrahigh load-bearing, the Zn-modified Mg-10Gd-2Y-1Zn-0.5Zr (GWZ1021K) alloy was designed for exploring the influence pattern of Zn element on the microstructure and properties of Mg-10Gd-2Y-0.5Zr (GW102K) with high RE content. Specifically, the Zn element enables finer and more homogeneous grains in the as-built GWZ1021K (18.2 µm) than that in the as-built GW102K (23.9 µm), owing to more nucleation sites and precipitation of nano-γ\" and nano-γ' to impede grain growth during the intrinsic heat treatment. After solution treatment, the eutectic phases and RE-rich regions completely disappear in both GW102K and GWZ1021K, yielding elongations of up to 14.6% and 13.2%, respectively. Notably, the high-temperature solution process allows the growth of nano-γ\" and nano-γ', as well as the segregation of RE/Zn clusters and subsequent atomic rearrangements to form the 14H long period stacking ordered (LPSO) structures. Following peak-aging treatment, although dense nano-β' is precipitated in both GW102K and GWZ1021K, the Zn element facilitates the precipitation of nano-β<sub>1</sub> to relieve the stress concentration induced by the two adjacent nano-β'. Generally, Zn elemental addition enhances strength with a sacrifice of ductility, which can be ascribed to the prismatic nano-β′ and basal 14H-LPSO structures work together to hinder the movement of both basal and non-basal dislocations. As a result, the GWZ1021K alloy achieves an ultra-high strength with an ultimate tensile strength of 403 MPa and a yield strength of 278 MPa, which far exceeds the reported average level of the WA-DED Mg-RE alloys. This study thus sheds new light on the fabrication of ultrahigh-strength Mg-RE alloy components by WA-DED process through appropriate composition modification.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"35 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The origin of ultrahigh-strength in GWZ1021K alloy fabricated by wire-arc directed energy deposition\",\"authors\":\"Xinzhi Li, Mugong Zhang, Xuewei Fang, Xiaochuan Liu, You Zhou, Tianxing Chang, Ke Huang\",\"doi\":\"10.1016/j.jma.2024.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research on the preparation of over-sized lightweight magnesium rare-earth (Mg-RE) components using the wire-arc directed energy deposition (WA-DED) is progressively gaining attention in the advanced manufacturing fields. Herein, to satisfy the demand of ultrahigh load-bearing, the Zn-modified Mg-10Gd-2Y-1Zn-0.5Zr (GWZ1021K) alloy was designed for exploring the influence pattern of Zn element on the microstructure and properties of Mg-10Gd-2Y-0.5Zr (GW102K) with high RE content. Specifically, the Zn element enables finer and more homogeneous grains in the as-built GWZ1021K (18.2 µm) than that in the as-built GW102K (23.9 µm), owing to more nucleation sites and precipitation of nano-γ\\\" and nano-γ' to impede grain growth during the intrinsic heat treatment. After solution treatment, the eutectic phases and RE-rich regions completely disappear in both GW102K and GWZ1021K, yielding elongations of up to 14.6% and 13.2%, respectively. Notably, the high-temperature solution process allows the growth of nano-γ\\\" and nano-γ', as well as the segregation of RE/Zn clusters and subsequent atomic rearrangements to form the 14H long period stacking ordered (LPSO) structures. Following peak-aging treatment, although dense nano-β' is precipitated in both GW102K and GWZ1021K, the Zn element facilitates the precipitation of nano-β<sub>1</sub> to relieve the stress concentration induced by the two adjacent nano-β'. Generally, Zn elemental addition enhances strength with a sacrifice of ductility, which can be ascribed to the prismatic nano-β′ and basal 14H-LPSO structures work together to hinder the movement of both basal and non-basal dislocations. As a result, the GWZ1021K alloy achieves an ultra-high strength with an ultimate tensile strength of 403 MPa and a yield strength of 278 MPa, which far exceeds the reported average level of the WA-DED Mg-RE alloys. This study thus sheds new light on the fabrication of ultrahigh-strength Mg-RE alloy components by WA-DED process through appropriate composition modification.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2024.11.011\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.11.011","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
The origin of ultrahigh-strength in GWZ1021K alloy fabricated by wire-arc directed energy deposition
Research on the preparation of over-sized lightweight magnesium rare-earth (Mg-RE) components using the wire-arc directed energy deposition (WA-DED) is progressively gaining attention in the advanced manufacturing fields. Herein, to satisfy the demand of ultrahigh load-bearing, the Zn-modified Mg-10Gd-2Y-1Zn-0.5Zr (GWZ1021K) alloy was designed for exploring the influence pattern of Zn element on the microstructure and properties of Mg-10Gd-2Y-0.5Zr (GW102K) with high RE content. Specifically, the Zn element enables finer and more homogeneous grains in the as-built GWZ1021K (18.2 µm) than that in the as-built GW102K (23.9 µm), owing to more nucleation sites and precipitation of nano-γ" and nano-γ' to impede grain growth during the intrinsic heat treatment. After solution treatment, the eutectic phases and RE-rich regions completely disappear in both GW102K and GWZ1021K, yielding elongations of up to 14.6% and 13.2%, respectively. Notably, the high-temperature solution process allows the growth of nano-γ" and nano-γ', as well as the segregation of RE/Zn clusters and subsequent atomic rearrangements to form the 14H long period stacking ordered (LPSO) structures. Following peak-aging treatment, although dense nano-β' is precipitated in both GW102K and GWZ1021K, the Zn element facilitates the precipitation of nano-β1 to relieve the stress concentration induced by the two adjacent nano-β'. Generally, Zn elemental addition enhances strength with a sacrifice of ductility, which can be ascribed to the prismatic nano-β′ and basal 14H-LPSO structures work together to hinder the movement of both basal and non-basal dislocations. As a result, the GWZ1021K alloy achieves an ultra-high strength with an ultimate tensile strength of 403 MPa and a yield strength of 278 MPa, which far exceeds the reported average level of the WA-DED Mg-RE alloys. This study thus sheds new light on the fabrication of ultrahigh-strength Mg-RE alloy components by WA-DED process through appropriate composition modification.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.