S Dhiman, S Gupta, S K Kashaw, S Chtita, S Kaya, A A Almehizia, V Asati
{"title":"发现作为抗癌剂的新型吡咯并[2,3-d]嘧啶衍生物:虚拟筛选和分子动力学研究。","authors":"S Dhiman, S Gupta, S K Kashaw, S Chtita, S Kaya, A A Almehizia, V Asati","doi":"10.1080/1062936X.2024.2432009","DOIUrl":null,"url":null,"abstract":"<p><p>CDK/Cyclins are dysregulated in several human cancers. Recent studies showed inhibition of CDK4/6 was responsible for controlling cell cycle progression and cancer cell growth. In the present study, atom-based and field-based 3D-QSAR, virtual screening, molecular docking and molecular dynamics studies were done for the development of novel pyrrolo[2,3-d]pyrimidine (P2P) derivatives as anticancer agents. The developed models showed good <i>Q</i><sup>2</sup> and <i>r</i><sup>2</sup> values for atom-based 3D-QSAR, which were equal to 0.7327 and 0.8939, whereas for field-based 3D-QSAR the values were 0.8552 and 0.6255, respectively. Molecular docking study showed good-binding interactions with amino acid residues such as VAL-101, HIE-100, ASP-104, ILE-19, LYS-147 and GLU-99, important for CDK4/6 inhibitory activity by using PDB ID: 5L2S. Pharmacophore hypothesis (HHHRR_1) was used in the screening of ZINC database. The top scored ZINC compound ZINC91325512 showed binding interactions with amino acid residues VAL-101, ILE-19, and LYS-147. Enumeration study revealed that the screened compound R1 showed binding interactions with VAL 101 and GLN 149 residues. Furthermore, the Molecular dynamic study showed compound R1, ZINC91325512 and ZINC04000264 having RMSD values of 1.649, 1.733 and 1.610 Å, respectively. These ZINC and enumerated compounds may be used for the development of novel pyrrolo[2,3-d]pyrimidine derivatives as anticancer agent.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"993-1025"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of novel pyrrolo[2,3-d]pyrimidine derivatives as anticancer agents: virtual screening and molecular dynamic studies.\",\"authors\":\"S Dhiman, S Gupta, S K Kashaw, S Chtita, S Kaya, A A Almehizia, V Asati\",\"doi\":\"10.1080/1062936X.2024.2432009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CDK/Cyclins are dysregulated in several human cancers. Recent studies showed inhibition of CDK4/6 was responsible for controlling cell cycle progression and cancer cell growth. In the present study, atom-based and field-based 3D-QSAR, virtual screening, molecular docking and molecular dynamics studies were done for the development of novel pyrrolo[2,3-d]pyrimidine (P2P) derivatives as anticancer agents. The developed models showed good <i>Q</i><sup>2</sup> and <i>r</i><sup>2</sup> values for atom-based 3D-QSAR, which were equal to 0.7327 and 0.8939, whereas for field-based 3D-QSAR the values were 0.8552 and 0.6255, respectively. Molecular docking study showed good-binding interactions with amino acid residues such as VAL-101, HIE-100, ASP-104, ILE-19, LYS-147 and GLU-99, important for CDK4/6 inhibitory activity by using PDB ID: 5L2S. Pharmacophore hypothesis (HHHRR_1) was used in the screening of ZINC database. The top scored ZINC compound ZINC91325512 showed binding interactions with amino acid residues VAL-101, ILE-19, and LYS-147. Enumeration study revealed that the screened compound R1 showed binding interactions with VAL 101 and GLN 149 residues. Furthermore, the Molecular dynamic study showed compound R1, ZINC91325512 and ZINC04000264 having RMSD values of 1.649, 1.733 and 1.610 Å, respectively. These ZINC and enumerated compounds may be used for the development of novel pyrrolo[2,3-d]pyrimidine derivatives as anticancer agent.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\" \",\"pages\":\"993-1025\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2024.2432009\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2432009","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Discovery of novel pyrrolo[2,3-d]pyrimidine derivatives as anticancer agents: virtual screening and molecular dynamic studies.
CDK/Cyclins are dysregulated in several human cancers. Recent studies showed inhibition of CDK4/6 was responsible for controlling cell cycle progression and cancer cell growth. In the present study, atom-based and field-based 3D-QSAR, virtual screening, molecular docking and molecular dynamics studies were done for the development of novel pyrrolo[2,3-d]pyrimidine (P2P) derivatives as anticancer agents. The developed models showed good Q2 and r2 values for atom-based 3D-QSAR, which were equal to 0.7327 and 0.8939, whereas for field-based 3D-QSAR the values were 0.8552 and 0.6255, respectively. Molecular docking study showed good-binding interactions with amino acid residues such as VAL-101, HIE-100, ASP-104, ILE-19, LYS-147 and GLU-99, important for CDK4/6 inhibitory activity by using PDB ID: 5L2S. Pharmacophore hypothesis (HHHRR_1) was used in the screening of ZINC database. The top scored ZINC compound ZINC91325512 showed binding interactions with amino acid residues VAL-101, ILE-19, and LYS-147. Enumeration study revealed that the screened compound R1 showed binding interactions with VAL 101 and GLN 149 residues. Furthermore, the Molecular dynamic study showed compound R1, ZINC91325512 and ZINC04000264 having RMSD values of 1.649, 1.733 and 1.610 Å, respectively. These ZINC and enumerated compounds may be used for the development of novel pyrrolo[2,3-d]pyrimidine derivatives as anticancer agent.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.