肉鸡肠道微生物群的综合培养可指导从鸡体内分离细菌。

IF 8 2区 生物学 Q1 BIOLOGY Science China Life Sciences Pub Date : 2024-11-26 DOI:10.1007/s11427-024-2735-8
Zhang-Chao Deng, Ke-Xin Cao, Yu-Xuan Huang, Zhe Peng, Ling Zhao, Dan Yi, Meng Liu, Lv-Hui Sun
{"title":"肉鸡肠道微生物群的综合培养可指导从鸡体内分离细菌。","authors":"Zhang-Chao Deng, Ke-Xin Cao, Yu-Xuan Huang, Zhe Peng, Ling Zhao, Dan Yi, Meng Liu, Lv-Hui Sun","doi":"10.1007/s11427-024-2735-8","DOIUrl":null,"url":null,"abstract":"<p><p>Chicken gut microbiota plays an important role in maintaining their physiological health. However, the cultivability of chicken gut microbiota is not well understood, limiting the exploration of certain key gut bacteria in regulating intestinal health and nutritional metabolism. This study aimed to examine the cultivability of chicken cecal microbiota and to provide guidance for future chicken gut microbiota cultivation. A total of 58 different culture conditions were applied to culture broiler cecal microbiota, and the culture-dependent (CD; pooled colonies form each plate) and culture-independent (CI; broiler cecal contents) samples were collected for 16S rRNA gene sequencing and microbial analysis. The CD methods detected higher microbial richness (3,636 vs 2,331 OTUs) than CI methods, and the recovery rates of bacterial OTUs and genera reached 43.6% and 68.9%, respectively. The genera of Bacteroides (19.9%), Alistipes (11.0%) and Barnesiella (10.7%) were highly abundant detected by CI methods, however, there occupied a small proportion (<1.0%) of total cultured microbiota in CD methods. We then developed reference figures and tables showing optimal cultivation conditions for different gut bacteria taxa. Moreover, 81 different lactic acid bacteria strains covering 5 genera were isolated, and 15 strains had less than 97.0% similarity to known bacteria in the national center for biotechnology information (NCBI) online database. Overall, this study provides preliminary guidance in culturing specific gut microbiota from chickens, which will contribute to future studies to characterize the biological functions of key microbes in chicken nutritional metabolism and health.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive cultivation of the broiler gut microbiota guides bacterial isolation from chickens.\",\"authors\":\"Zhang-Chao Deng, Ke-Xin Cao, Yu-Xuan Huang, Zhe Peng, Ling Zhao, Dan Yi, Meng Liu, Lv-Hui Sun\",\"doi\":\"10.1007/s11427-024-2735-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chicken gut microbiota plays an important role in maintaining their physiological health. However, the cultivability of chicken gut microbiota is not well understood, limiting the exploration of certain key gut bacteria in regulating intestinal health and nutritional metabolism. This study aimed to examine the cultivability of chicken cecal microbiota and to provide guidance for future chicken gut microbiota cultivation. A total of 58 different culture conditions were applied to culture broiler cecal microbiota, and the culture-dependent (CD; pooled colonies form each plate) and culture-independent (CI; broiler cecal contents) samples were collected for 16S rRNA gene sequencing and microbial analysis. The CD methods detected higher microbial richness (3,636 vs 2,331 OTUs) than CI methods, and the recovery rates of bacterial OTUs and genera reached 43.6% and 68.9%, respectively. The genera of Bacteroides (19.9%), Alistipes (11.0%) and Barnesiella (10.7%) were highly abundant detected by CI methods, however, there occupied a small proportion (<1.0%) of total cultured microbiota in CD methods. We then developed reference figures and tables showing optimal cultivation conditions for different gut bacteria taxa. Moreover, 81 different lactic acid bacteria strains covering 5 genera were isolated, and 15 strains had less than 97.0% similarity to known bacteria in the national center for biotechnology information (NCBI) online database. Overall, this study provides preliminary guidance in culturing specific gut microbiota from chickens, which will contribute to future studies to characterize the biological functions of key microbes in chicken nutritional metabolism and health.</p>\",\"PeriodicalId\":21576,\"journal\":{\"name\":\"Science China Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11427-024-2735-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2735-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

鸡肠道微生物群在维持鸡的生理健康方面发挥着重要作用。然而,鸡肠道微生物群的可培养性并不十分清楚,限制了对某些调节肠道健康和营养代谢的关键肠道细菌的探索。本研究旨在考察鸡盲肠微生物群的可培养性,为今后鸡肠道微生物群的培养提供指导。本研究共采用了 58 种不同的培养条件来培养肉鸡盲肠微生物群,并收集了培养依赖型(CD;每个平板上的菌落汇集)和培养非依赖型(CI;肉鸡盲肠内容物)样品进行 16S rRNA 基因测序和微生物分析。与 CI 方法相比,CD 方法检测到的微生物丰富度更高(3,636 个 OTU 对 2,331 个 OTU),细菌 OTU 和菌属的回收率分别达到 43.6% 和 68.9%。在 CI 方法中,Bacteroides 属(19.9%)、Alistipes 属(11.0%)和 Barnesiella 属(10.7%)的检出率较高,但在 CI 方法中,Bacteroides 属、Alistipes 属和 Barnesiella 属的检出率较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive cultivation of the broiler gut microbiota guides bacterial isolation from chickens.

Chicken gut microbiota plays an important role in maintaining their physiological health. However, the cultivability of chicken gut microbiota is not well understood, limiting the exploration of certain key gut bacteria in regulating intestinal health and nutritional metabolism. This study aimed to examine the cultivability of chicken cecal microbiota and to provide guidance for future chicken gut microbiota cultivation. A total of 58 different culture conditions were applied to culture broiler cecal microbiota, and the culture-dependent (CD; pooled colonies form each plate) and culture-independent (CI; broiler cecal contents) samples were collected for 16S rRNA gene sequencing and microbial analysis. The CD methods detected higher microbial richness (3,636 vs 2,331 OTUs) than CI methods, and the recovery rates of bacterial OTUs and genera reached 43.6% and 68.9%, respectively. The genera of Bacteroides (19.9%), Alistipes (11.0%) and Barnesiella (10.7%) were highly abundant detected by CI methods, however, there occupied a small proportion (<1.0%) of total cultured microbiota in CD methods. We then developed reference figures and tables showing optimal cultivation conditions for different gut bacteria taxa. Moreover, 81 different lactic acid bacteria strains covering 5 genera were isolated, and 15 strains had less than 97.0% similarity to known bacteria in the national center for biotechnology information (NCBI) online database. Overall, this study provides preliminary guidance in culturing specific gut microbiota from chickens, which will contribute to future studies to characterize the biological functions of key microbes in chicken nutritional metabolism and health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.10
自引率
8.80%
发文量
2907
审稿时长
3.2 months
期刊介绍: Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.
期刊最新文献
Comprehensive cultivation of the broiler gut microbiota guides bacterial isolation from chickens. Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations. Palindrome-mediated DNA nanotubes with cell-specific aptamers to improve targeted antitumor effects and reduce toxicity on non-small cell lung cancer. Exaptation of pectoral fins for olfaction in the spiny red gurnard (Chelidonichthys spinosus) through an ancient receptor. Genomic analysis of modern maize inbred lines reveals diversity and selective breeding effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1