高度闭塞无约束环境下的人脸定位与检测

IF 5.1 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Science and Technology-An International Journal-Jestech Pub Date : 2024-11-29 DOI:10.1016/j.jestch.2024.101893
Abdulaziz Alashbi , Abdul Hakim H.M. Mohamed , Ayman A. El-Saleh , Ibraheem Shayea , Mohd Shahrizal Sunar , Zieb Rabie Alqahtani , Faisal Saeed , Bilal Saoud
{"title":"高度闭塞无约束环境下的人脸定位与检测","authors":"Abdulaziz Alashbi ,&nbsp;Abdul Hakim H.M. Mohamed ,&nbsp;Ayman A. El-Saleh ,&nbsp;Ibraheem Shayea ,&nbsp;Mohd Shahrizal Sunar ,&nbsp;Zieb Rabie Alqahtani ,&nbsp;Faisal Saeed ,&nbsp;Bilal Saoud","doi":"10.1016/j.jestch.2024.101893","DOIUrl":null,"url":null,"abstract":"<div><div>Significant advancements have been achieved in the field of computer vision pertaining to the detection of human faces. This technological development holds great potential for a wide range of applications including but not limited to identification, surveillance and expression recognition. Unconstrained face identification has been significantly improved by the advancements in Deep Learning algorithms (DL). However, the presence of severe occlusion is an ongoing obstacle particularly when it obstructs a substantial section of the facial area, resulting in the absence of crucial facial characteristics. Furthermore, the limited availability of comprehensive datasets containing substantially obscured faces exacerbates the problem, impeding the efficacy of face detection programs. This study presents a new methodology, which incorporates an advanced occluded face detection (OFD) model, in order to enhance feature extraction and detection network. A dataset was developed specifically for training and testing the model. The new dataset includes faces with significant occlusion. The utilization of contextual-based annotation approaches improves the depiction of crucial facial characteristics. The OFD model exhibits exceptional performance and attaining a notable accuracy rate of 57.84%, a precision rate of 73.70% and a recall rate of 42.63%. These results surpass those achieved by alternative methods such as YOLO-v3 and Mobilenet-SSD. This study shows the capacity to make substantial progress in detecting occluded faces, hence offering the ability to make a positive influence on the domains of identification, surveillance and expression recognition.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"61 ","pages":"Article 101893"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human face localization and detection in highly occluded unconstrained environments\",\"authors\":\"Abdulaziz Alashbi ,&nbsp;Abdul Hakim H.M. Mohamed ,&nbsp;Ayman A. El-Saleh ,&nbsp;Ibraheem Shayea ,&nbsp;Mohd Shahrizal Sunar ,&nbsp;Zieb Rabie Alqahtani ,&nbsp;Faisal Saeed ,&nbsp;Bilal Saoud\",\"doi\":\"10.1016/j.jestch.2024.101893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Significant advancements have been achieved in the field of computer vision pertaining to the detection of human faces. This technological development holds great potential for a wide range of applications including but not limited to identification, surveillance and expression recognition. Unconstrained face identification has been significantly improved by the advancements in Deep Learning algorithms (DL). However, the presence of severe occlusion is an ongoing obstacle particularly when it obstructs a substantial section of the facial area, resulting in the absence of crucial facial characteristics. Furthermore, the limited availability of comprehensive datasets containing substantially obscured faces exacerbates the problem, impeding the efficacy of face detection programs. This study presents a new methodology, which incorporates an advanced occluded face detection (OFD) model, in order to enhance feature extraction and detection network. A dataset was developed specifically for training and testing the model. The new dataset includes faces with significant occlusion. The utilization of contextual-based annotation approaches improves the depiction of crucial facial characteristics. The OFD model exhibits exceptional performance and attaining a notable accuracy rate of 57.84%, a precision rate of 73.70% and a recall rate of 42.63%. These results surpass those achieved by alternative methods such as YOLO-v3 and Mobilenet-SSD. This study shows the capacity to make substantial progress in detecting occluded faces, hence offering the ability to make a positive influence on the domains of identification, surveillance and expression recognition.</div></div>\",\"PeriodicalId\":48609,\"journal\":{\"name\":\"Engineering Science and Technology-An International Journal-Jestech\",\"volume\":\"61 \",\"pages\":\"Article 101893\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Science and Technology-An International Journal-Jestech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215098624002799\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098624002799","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

计算机视觉领域在人脸检测方面取得了重大进展。这项技术的发展具有广泛的应用潜力,包括但不限于身份识别、监视和表情识别。深度学习算法(DL)的进步极大地改善了无约束人脸识别。然而,严重闭塞的存在是一个持续的障碍,特别是当它阻塞了面部区域的很大一部分时,导致关键面部特征的缺失。此外,包含大量模糊人脸的综合数据集的有限可用性加剧了这一问题,阻碍了人脸检测程序的有效性。本文提出了一种新的方法,该方法结合了一种先进的遮挡人脸检测模型,以增强特征提取和检测网络。专门为训练和测试模型开发了一个数据集。新的数据集包括具有明显遮挡的人脸。基于上下文的注释方法的使用改善了对关键面部特征的描述。OFD模型表现出优异的性能,准确率达到57.84%,准确率达到73.70%,召回率达到42.63%。这些结果超过了YOLO-v3和Mobilenet-SSD等替代方法所取得的结果。这项研究显示了在检测遮挡人脸方面取得实质性进展的能力,从而提供了在识别、监视和表情识别领域产生积极影响的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human face localization and detection in highly occluded unconstrained environments
Significant advancements have been achieved in the field of computer vision pertaining to the detection of human faces. This technological development holds great potential for a wide range of applications including but not limited to identification, surveillance and expression recognition. Unconstrained face identification has been significantly improved by the advancements in Deep Learning algorithms (DL). However, the presence of severe occlusion is an ongoing obstacle particularly when it obstructs a substantial section of the facial area, resulting in the absence of crucial facial characteristics. Furthermore, the limited availability of comprehensive datasets containing substantially obscured faces exacerbates the problem, impeding the efficacy of face detection programs. This study presents a new methodology, which incorporates an advanced occluded face detection (OFD) model, in order to enhance feature extraction and detection network. A dataset was developed specifically for training and testing the model. The new dataset includes faces with significant occlusion. The utilization of contextual-based annotation approaches improves the depiction of crucial facial characteristics. The OFD model exhibits exceptional performance and attaining a notable accuracy rate of 57.84%, a precision rate of 73.70% and a recall rate of 42.63%. These results surpass those achieved by alternative methods such as YOLO-v3 and Mobilenet-SSD. This study shows the capacity to make substantial progress in detecting occluded faces, hence offering the ability to make a positive influence on the domains of identification, surveillance and expression recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Science and Technology-An International Journal-Jestech
Engineering Science and Technology-An International Journal-Jestech Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.20
自引率
3.50%
发文量
153
审稿时长
22 days
期刊介绍: Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology. The scope of JESTECH includes a wide spectrum of subjects including: -Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing) -Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences) -Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)
期刊最新文献
Belief game: Verifying smart contract functionality in player dynamic interactions Day-ahead photovoltaic power generation forecasting with the HWGC-WPD-LSTM hybrid model assisted by wavelet packet decomposition and improved similar day method Human face localization and detection in highly occluded unconstrained environments Quantifying the impact of construction defects on square RC columns Development of high-speed scanning acoustic microscopy system: Simplified design and stabilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1