硫化物液体与碳酸熔体之间亲铜亲铁元素的分配

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geochimica et Cosmochimica Acta Pub Date : 2024-11-24 DOI:10.1016/j.gca.2024.11.019
Shuo Xue , Yuan Li
{"title":"硫化物液体与碳酸熔体之间亲铜亲铁元素的分配","authors":"Shuo Xue ,&nbsp;Yuan Li","doi":"10.1016/j.gca.2024.11.019","DOIUrl":null,"url":null,"abstract":"<div><div>Carbonated melts play a significant role in mobilizing lithophile and volatile elements in the Earth’s mantle and mantle metasomatism. However, there has been limited investigation into their potential for mobilizing chalcophile and siderophile elements<!--> <!-->(CSEs). In this study, we experimentally determine the sulfide liquid–carbonated melt partition coefficients of CSEs (<span><math><mrow><msubsup><mi>D</mi><mrow><mi>CSE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span>) for a range of elements, including Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, In, Sn, Re, and Pb, at 1300–1600 °C, 1.0–3.0 GPa, and<!--> <!-->oxygen fugacity (<em>f</em>O<sub>2</sub>) close to the graphite-CO<sub>2</sub> fluid buffer. Furthermore, the <span><math><mrow><msup><mrow><mi>D</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msup></mrow></math></span> values for lithophile elements Cr, Mn, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, and Ta (<span><math><mrow><msubsup><mi>D</mi><mrow><mi>LithoE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span>) are also determined. The obtained <span><math><mrow><msubsup><mi>D</mi><mrow><mi>CSE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> values are 34–1230 for Co, 380–75200 for Ni, 200–14900 for Cu and Ag, 0.5–28 for Zn and Mo, 42–98 for Se, 24–640 for Cd, 5–52 for In and Sn, 650–15200 for Re, and 22–2470 for Pb. The obtained <span><math><mrow><msubsup><mi>D</mi><mrow><mi>LithoE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> values are below 1–10. The variations of <span><math><mrow><msubsup><mi>D</mi><mrow><mi>CSE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mi>D</mi><mrow><mi>LithoE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> are primarily influenced by the FeO<sub>tot</sub> content in the carbonated melts. A partitioning model was developed to parameterize <span><math><mrow><msubsup><mi>D</mi><mrow><mi>CSE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mi>D</mi><mrow><mi>LithoE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> as a multi-function of pressure, temperature, composition of the carbonated melt (mainly the FeO<sub>tot</sub> content), and composition of the sulfide liquid. Our parameterization can explain the observed large variations of <span><math><mrow><msubsup><mi>D</mi><mrow><mi>CSE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mi>D</mi><mrow><mi>LithoE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> for most of the trace elements studied. Using our <span><math><mrow><msubsup><mi>D</mi><mrow><mi>CSE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> parameterization, we model the CSE and U–Th contents of low-degree partial melts of carbonated mantle peridotite and slab eclogite with sulfur concentrations ranging from 50 to 500 µg/g. The modeling results can generally explain the trace element patterns observed in natural kimberlites and carbonatites; however, the peridotite- or slab-derived carbonated melts have a low capability in mobilizing CSEs, which can extract less than 3 % of Cu, Ni, Co, Re, and Os, 3–30 % of Mo, Pb, and Se, but up to 30–50 % U and Th from the source lithology. Consequently, the influence of carbonatite metasomatism on the Cu, Ni, Co, Re, and Os systematics of the Earth’s mantle is minimal, although local enrichments of CSEs may occur when sulfides precipitate from carbonated melts. Because of the elevated concentrations of U and Th and the corresponding U/Pb and Th/Pb ratios in the carbonated melts, the mantle lithology that has undergone metasomatism by these melts can become a geochemical reservoir with high <sup>208</sup>Pb/<sup>206</sup>Pb ratios. However, the effect of carbonatite metasomatism on Re–Os isotopic systems of the mantle is minimal due to the low Re concentrations in the carbonated melts. Accordingly, the radiogenic Pb–Os isotopic signatures of HIMU ocean island basalts cannot be explained solely by carbonatite metasomatism in the mantle.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"388 ","pages":"Pages 94-113"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The partitioning of chalcophile and siderophile elements (CSEs) between sulfide liquid and carbonated melt\",\"authors\":\"Shuo Xue ,&nbsp;Yuan Li\",\"doi\":\"10.1016/j.gca.2024.11.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbonated melts play a significant role in mobilizing lithophile and volatile elements in the Earth’s mantle and mantle metasomatism. However, there has been limited investigation into their potential for mobilizing chalcophile and siderophile elements<!--> <!-->(CSEs). In this study, we experimentally determine the sulfide liquid–carbonated melt partition coefficients of CSEs (<span><math><mrow><msubsup><mi>D</mi><mrow><mi>CSE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span>) for a range of elements, including Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, In, Sn, Re, and Pb, at 1300–1600 °C, 1.0–3.0 GPa, and<!--> <!-->oxygen fugacity (<em>f</em>O<sub>2</sub>) close to the graphite-CO<sub>2</sub> fluid buffer. Furthermore, the <span><math><mrow><msup><mrow><mi>D</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msup></mrow></math></span> values for lithophile elements Cr, Mn, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, and Ta (<span><math><mrow><msubsup><mi>D</mi><mrow><mi>LithoE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span>) are also determined. The obtained <span><math><mrow><msubsup><mi>D</mi><mrow><mi>CSE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> values are 34–1230 for Co, 380–75200 for Ni, 200–14900 for Cu and Ag, 0.5–28 for Zn and Mo, 42–98 for Se, 24–640 for Cd, 5–52 for In and Sn, 650–15200 for Re, and 22–2470 for Pb. The obtained <span><math><mrow><msubsup><mi>D</mi><mrow><mi>LithoE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> values are below 1–10. The variations of <span><math><mrow><msubsup><mi>D</mi><mrow><mi>CSE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mi>D</mi><mrow><mi>LithoE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> are primarily influenced by the FeO<sub>tot</sub> content in the carbonated melts. A partitioning model was developed to parameterize <span><math><mrow><msubsup><mi>D</mi><mrow><mi>CSE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mi>D</mi><mrow><mi>LithoE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> as a multi-function of pressure, temperature, composition of the carbonated melt (mainly the FeO<sub>tot</sub> content), and composition of the sulfide liquid. Our parameterization can explain the observed large variations of <span><math><mrow><msubsup><mi>D</mi><mrow><mi>CSE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mi>D</mi><mrow><mi>LithoE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> for most of the trace elements studied. Using our <span><math><mrow><msubsup><mi>D</mi><mrow><mi>CSE</mi></mrow><mrow><mi>Sul</mi><mo>/</mo><mi>C</mi><mi>_</mi><mi>m</mi><mi>e</mi><mi>l</mi><mi>t</mi></mrow></msubsup></mrow></math></span> parameterization, we model the CSE and U–Th contents of low-degree partial melts of carbonated mantle peridotite and slab eclogite with sulfur concentrations ranging from 50 to 500 µg/g. The modeling results can generally explain the trace element patterns observed in natural kimberlites and carbonatites; however, the peridotite- or slab-derived carbonated melts have a low capability in mobilizing CSEs, which can extract less than 3 % of Cu, Ni, Co, Re, and Os, 3–30 % of Mo, Pb, and Se, but up to 30–50 % U and Th from the source lithology. Consequently, the influence of carbonatite metasomatism on the Cu, Ni, Co, Re, and Os systematics of the Earth’s mantle is minimal, although local enrichments of CSEs may occur when sulfides precipitate from carbonated melts. Because of the elevated concentrations of U and Th and the corresponding U/Pb and Th/Pb ratios in the carbonated melts, the mantle lithology that has undergone metasomatism by these melts can become a geochemical reservoir with high <sup>208</sup>Pb/<sup>206</sup>Pb ratios. However, the effect of carbonatite metasomatism on Re–Os isotopic systems of the mantle is minimal due to the low Re concentrations in the carbonated melts. Accordingly, the radiogenic Pb–Os isotopic signatures of HIMU ocean island basalts cannot be explained solely by carbonatite metasomatism in the mantle.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"388 \",\"pages\":\"Pages 94-113\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001670372400601X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001670372400601X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

碳酸化熔体对地幔中亲石元素和挥发性元素的调动以及地幔交代作用起着重要作用。然而,对它们动员亲铜和亲铁元素(cse)的潜力的研究有限。在本研究中,我们通过实验确定了CSEs (DCSESul/C_melt)在1300 ~ 1600℃、1.0 ~ 3.0 GPa和氧逸度(fO2)接近石墨- co2流体缓冲液时,对Co、Ni、Cu、Zn、Se、Mo、Ag、Cd、In、Sn、Re和Pb等元素的硫化液碳酸化熔体分配系数(DCSESul/C_melt)。此外,还测定了亲石元素Cr、Mn、Rb、Sr、Y、Zr、Nb、Cs、Ba、Hf、Ta (DLithoESul/C_melt)的DSul/C_melt值。所得的DCSESul/C_melt值分别为Co的34-1230、Ni的380-75200、Cu和Ag的200-14900、Zn和Mo的0.5-28、Se的42-98、Cd的24-640、In和Sn的5-52、Re的650-15200、Pb的22-2470。得到的DLithoESul/C_melt值小于1-10。DCSESul/C_melt和DLithoESul/C_melt的变化主要受碳酸化熔体中FeOtot含量的影响。建立了DCSESul/C_melt和DLithoESul/C_melt的分配模型,将其参数化为压力、温度、碳酸化熔体组成(主要是FeOtot含量)和硫化物液体组成的多重函数。我们的参数化可以解释DCSESul/C_melt和DLithoESul/C_melt对大多数所研究的微量元素的大变化。采用DCSESul/C_melt参数化方法,模拟了硫浓度为50 ~ 500µg/g的碳酸地幔橄榄岩和板榴辉岩低度部分熔体的CSE和U-Th含量。模拟结果能较好地解释在天然金伯利岩和碳酸盐岩中观测到的微量元素模式;而橄榄岩或板状碳酸盐熔体对煤的动员能力较弱,可从源岩性中提取不到3%的Cu、Ni、Co、Re和Os, 3 - 30%的Mo、Pb和Se,但可提取30 - 50%的U和Th。因此,碳酸盐岩交代作用对地幔的Cu、Ni、Co、Re和Os系统的影响很小,尽管当硫化物从碳酸化熔体中沉淀时,可能会发生局域的CSEs富集。碳酸化熔融体中U、Th浓度的升高及其对应的U/Pb和Th/Pb比值的升高,使得经过碳酸化熔融体交代作用的地幔岩性可以成为具有高208Pb/206Pb比值的地球化学储层。然而,由于碳酸化熔体中的Re浓度较低,碳酸盐岩交代作用对地幔Re - os同位素系统的影响很小。因此,HIMU洋岛玄武岩的放射性成因Pb-Os同位素特征不能仅仅用地幔中的碳酸盐岩交代作用来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The partitioning of chalcophile and siderophile elements (CSEs) between sulfide liquid and carbonated melt
Carbonated melts play a significant role in mobilizing lithophile and volatile elements in the Earth’s mantle and mantle metasomatism. However, there has been limited investigation into their potential for mobilizing chalcophile and siderophile elements (CSEs). In this study, we experimentally determine the sulfide liquid–carbonated melt partition coefficients of CSEs (DCSESul/C_melt) for a range of elements, including Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, In, Sn, Re, and Pb, at 1300–1600 °C, 1.0–3.0 GPa, and oxygen fugacity (fO2) close to the graphite-CO2 fluid buffer. Furthermore, the DSul/C_melt values for lithophile elements Cr, Mn, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, and Ta (DLithoESul/C_melt) are also determined. The obtained DCSESul/C_melt values are 34–1230 for Co, 380–75200 for Ni, 200–14900 for Cu and Ag, 0.5–28 for Zn and Mo, 42–98 for Se, 24–640 for Cd, 5–52 for In and Sn, 650–15200 for Re, and 22–2470 for Pb. The obtained DLithoESul/C_melt values are below 1–10. The variations of DCSESul/C_melt and DLithoESul/C_melt are primarily influenced by the FeOtot content in the carbonated melts. A partitioning model was developed to parameterize DCSESul/C_melt and DLithoESul/C_melt as a multi-function of pressure, temperature, composition of the carbonated melt (mainly the FeOtot content), and composition of the sulfide liquid. Our parameterization can explain the observed large variations of DCSESul/C_melt and DLithoESul/C_melt for most of the trace elements studied. Using our DCSESul/C_melt parameterization, we model the CSE and U–Th contents of low-degree partial melts of carbonated mantle peridotite and slab eclogite with sulfur concentrations ranging from 50 to 500 µg/g. The modeling results can generally explain the trace element patterns observed in natural kimberlites and carbonatites; however, the peridotite- or slab-derived carbonated melts have a low capability in mobilizing CSEs, which can extract less than 3 % of Cu, Ni, Co, Re, and Os, 3–30 % of Mo, Pb, and Se, but up to 30–50 % U and Th from the source lithology. Consequently, the influence of carbonatite metasomatism on the Cu, Ni, Co, Re, and Os systematics of the Earth’s mantle is minimal, although local enrichments of CSEs may occur when sulfides precipitate from carbonated melts. Because of the elevated concentrations of U and Th and the corresponding U/Pb and Th/Pb ratios in the carbonated melts, the mantle lithology that has undergone metasomatism by these melts can become a geochemical reservoir with high 208Pb/206Pb ratios. However, the effect of carbonatite metasomatism on Re–Os isotopic systems of the mantle is minimal due to the low Re concentrations in the carbonated melts. Accordingly, the radiogenic Pb–Os isotopic signatures of HIMU ocean island basalts cannot be explained solely by carbonatite metasomatism in the mantle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
期刊最新文献
Mechanism of mineral adsorption enhancing the reduction of hexavalent chromium by natural organic matter Exogenous iron mitigates photo-facilitation of soil organic matter Helium isotopes in geothermal fluids reveal off-rift plume degassing and localized seismicity-induced processes in North Iceland Extending the utility of the Tl isotope paleoredox proxy to carbonates Microbial-mediated bastnaesite dissolution as a viable source of clay-adsorbed rare earth elements in the regolith-hosted deposits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1