{"title":"蛋白质-核酸复合物:对接和结合亲和力","authors":"M. Michael Gromiha, K. Harini","doi":"10.1016/j.sbi.2024.102955","DOIUrl":null,"url":null,"abstract":"<div><div>Protein-nucleic interactions play essential roles in several biological processes, such as gene regulation, replication, transcription, repair and packaging. The knowledge of three-dimensional structures of protein-nucleic acid complexes and their binding affinities helps to understand these functions. In this review, we focus on two major aspects namely, (i) deciphering the three-dimensional structures of protein-nucleic acid complexes and (ii) predicting their binding affinities. The first part is devoted to the state-of-the-art methods for predicting the native structures and their performances including recent CASP targets. The second part is focused on different aspects of investigating the binding affinity of protein-nucleic acid complexes: (i) databases for thermodynamic parameters to understand the binding affinity, (ii) important features determining protein-nucleic acid binding affinity, (iii) predicting the binding affinity of protein-nucleic acid complexes using sequence and structure-based parameters and (iv) change in binding affinity upon mutation. It includes the latest developments in protein-nucleic acid docking algorithms and binding affinity predictions along with a list of computational resources for understanding protein-DNA and protein-RNA interactions.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"90 ","pages":"Article 102955"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein-nucleic acid complexes: Docking and binding affinity\",\"authors\":\"M. Michael Gromiha, K. Harini\",\"doi\":\"10.1016/j.sbi.2024.102955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protein-nucleic interactions play essential roles in several biological processes, such as gene regulation, replication, transcription, repair and packaging. The knowledge of three-dimensional structures of protein-nucleic acid complexes and their binding affinities helps to understand these functions. In this review, we focus on two major aspects namely, (i) deciphering the three-dimensional structures of protein-nucleic acid complexes and (ii) predicting their binding affinities. The first part is devoted to the state-of-the-art methods for predicting the native structures and their performances including recent CASP targets. The second part is focused on different aspects of investigating the binding affinity of protein-nucleic acid complexes: (i) databases for thermodynamic parameters to understand the binding affinity, (ii) important features determining protein-nucleic acid binding affinity, (iii) predicting the binding affinity of protein-nucleic acid complexes using sequence and structure-based parameters and (iv) change in binding affinity upon mutation. It includes the latest developments in protein-nucleic acid docking algorithms and binding affinity predictions along with a list of computational resources for understanding protein-DNA and protein-RNA interactions.</div></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"90 \",\"pages\":\"Article 102955\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24001829\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24001829","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Protein-nucleic acid complexes: Docking and binding affinity
Protein-nucleic interactions play essential roles in several biological processes, such as gene regulation, replication, transcription, repair and packaging. The knowledge of three-dimensional structures of protein-nucleic acid complexes and their binding affinities helps to understand these functions. In this review, we focus on two major aspects namely, (i) deciphering the three-dimensional structures of protein-nucleic acid complexes and (ii) predicting their binding affinities. The first part is devoted to the state-of-the-art methods for predicting the native structures and their performances including recent CASP targets. The second part is focused on different aspects of investigating the binding affinity of protein-nucleic acid complexes: (i) databases for thermodynamic parameters to understand the binding affinity, (ii) important features determining protein-nucleic acid binding affinity, (iii) predicting the binding affinity of protein-nucleic acid complexes using sequence and structure-based parameters and (iv) change in binding affinity upon mutation. It includes the latest developments in protein-nucleic acid docking algorithms and binding affinity predictions along with a list of computational resources for understanding protein-DNA and protein-RNA interactions.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation