基于磁电刺激的生物聚合物基纳米复合材料抗菌性能的远程激活

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Interfaces Pub Date : 2024-10-14 DOI:10.1002/admi.202400080
Joana Moreira, Margarida M. Fernandes, Daniela M. Correia, Vitor Correia, Mikel Rincón-Iglesias, Senentxu Lanceros-Mendez
{"title":"基于磁电刺激的生物聚合物基纳米复合材料抗菌性能的远程激活","authors":"Joana Moreira,&nbsp;Margarida M. Fernandes,&nbsp;Daniela M. Correia,&nbsp;Vitor Correia,&nbsp;Mikel Rincón-Iglesias,&nbsp;Senentxu Lanceros-Mendez","doi":"10.1002/admi.202400080","DOIUrl":null,"url":null,"abstract":"<p>Antimicrobial materials are crucial for high-touch surfaces to prevent the adhesion and proliferation of microorganisms, playing a key role in infection control measures. In this work, a magnetoelectric nanocomposite able to exert antimicrobial activity when magnetically stimulated, is obtained by solvent casting. The nanocomposites, composed of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and cobalt ferrite magnetostrictive nanoparticles (CFO NPs), respond to a variable magnetic field by mechanically stimulating the piezoelectric component of the material, thereby inducing an electrical polarization. The antimicrobial properties of the material are determined by exposing it to different frequencies (0.3 and 1 Hz) using a custom-designed magnetic bioreactor, where the resulting electrical microenvironments are the contributing factor. The growth of <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> over the nanocomposite is highly inhibited when magnetically stimulated (dynamic conditions) mainly at 0.3 Hz, in contrast to static conditions. The electric microenvironment is further measured upon magnetic stimulation, with PHBV films with 20% CFO inducing a voltage variation of ≈20 µV at the surface while the films with 10% CFO induced a voltage variation of ≈12 µV. This work demonstrated that magnetic stimulation, combined with magnetoelectric materials, can be used for remote antimicrobial control, thus preventing the spread of infections.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 34","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400080","citationCount":"0","resultStr":"{\"title\":\"Remote Activation of Antimicrobial Properties via Magnetoeletric Stimulation of Biopolymer-Based Nanocomposites\",\"authors\":\"Joana Moreira,&nbsp;Margarida M. Fernandes,&nbsp;Daniela M. Correia,&nbsp;Vitor Correia,&nbsp;Mikel Rincón-Iglesias,&nbsp;Senentxu Lanceros-Mendez\",\"doi\":\"10.1002/admi.202400080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antimicrobial materials are crucial for high-touch surfaces to prevent the adhesion and proliferation of microorganisms, playing a key role in infection control measures. In this work, a magnetoelectric nanocomposite able to exert antimicrobial activity when magnetically stimulated, is obtained by solvent casting. The nanocomposites, composed of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and cobalt ferrite magnetostrictive nanoparticles (CFO NPs), respond to a variable magnetic field by mechanically stimulating the piezoelectric component of the material, thereby inducing an electrical polarization. The antimicrobial properties of the material are determined by exposing it to different frequencies (0.3 and 1 Hz) using a custom-designed magnetic bioreactor, where the resulting electrical microenvironments are the contributing factor. The growth of <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> over the nanocomposite is highly inhibited when magnetically stimulated (dynamic conditions) mainly at 0.3 Hz, in contrast to static conditions. The electric microenvironment is further measured upon magnetic stimulation, with PHBV films with 20% CFO inducing a voltage variation of ≈20 µV at the surface while the films with 10% CFO induced a voltage variation of ≈12 µV. This work demonstrated that magnetic stimulation, combined with magnetoelectric materials, can be used for remote antimicrobial control, thus preventing the spread of infections.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"11 34\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400080\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400080\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400080","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

抗菌材料对于防止高接触表面微生物的粘附和增殖至关重要,在感染控制措施中起着关键作用。在这项工作中,通过溶剂铸造获得了一种在磁刺激下能够发挥抗菌活性的磁电纳米复合材料。该纳米复合材料由聚(羟基丁酸酯-共羟基戊酸酯)(PHBV)和钴铁氧体磁致伸缩纳米颗粒(CFO NPs)组成,通过机械刺激材料的压电成分来响应可变磁场,从而诱导电极化。材料的抗菌性能是通过使用定制设计的磁性生物反应器将其暴露于不同频率(0.3和1 Hz)来确定的,其中产生的电微环境是起作用的因素。与静态条件相比,在0.3 Hz的磁场刺激下(动态条件),大肠杆菌和金黄色葡萄球菌在纳米复合材料上的生长受到高度抑制。在磁刺激下进一步测量电微环境,含20% CFO的PHBV膜在表面诱导的电压变化约为20µV,而含10% CFO的PHBV膜在表面诱导的电压变化约为12µV。这项工作表明,磁刺激与磁电材料相结合,可以用于远程抗菌控制,从而防止感染的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remote Activation of Antimicrobial Properties via Magnetoeletric Stimulation of Biopolymer-Based Nanocomposites

Antimicrobial materials are crucial for high-touch surfaces to prevent the adhesion and proliferation of microorganisms, playing a key role in infection control measures. In this work, a magnetoelectric nanocomposite able to exert antimicrobial activity when magnetically stimulated, is obtained by solvent casting. The nanocomposites, composed of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and cobalt ferrite magnetostrictive nanoparticles (CFO NPs), respond to a variable magnetic field by mechanically stimulating the piezoelectric component of the material, thereby inducing an electrical polarization. The antimicrobial properties of the material are determined by exposing it to different frequencies (0.3 and 1 Hz) using a custom-designed magnetic bioreactor, where the resulting electrical microenvironments are the contributing factor. The growth of Escherichia coli and Staphylococcus aureus over the nanocomposite is highly inhibited when magnetically stimulated (dynamic conditions) mainly at 0.3 Hz, in contrast to static conditions. The electric microenvironment is further measured upon magnetic stimulation, with PHBV films with 20% CFO inducing a voltage variation of ≈20 µV at the surface while the films with 10% CFO induced a voltage variation of ≈12 µV. This work demonstrated that magnetic stimulation, combined with magnetoelectric materials, can be used for remote antimicrobial control, thus preventing the spread of infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
期刊最新文献
Issue Information Polarity-selective Transfer of Lipophilic Cargoes From Lipid Droplets (Oleosomes) to Lipid Bilayers (Adv. Mater. Interfaces 5/2025) In Situ X-Ray Photoelectron Spectroscopy Study of Atomic Layer Deposited Cerium Oxide on SiO2: Substrate Influence on the Reaction Mechanism During the Early Stages of Growth (Adv. Mater. Interfaces 5/2025) Issue Information Probing the Wannier function of Crystalline Solids with Angle-Resolved Photoemission Spectroscopy (Adv. Mater. Interfaces 4/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1