揭示了净化和合金元素对镁合金腐蚀性能和钝化的影响

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2024-12-04 DOI:10.1016/j.jma.2024.11.023
Arash Fattah-alhosseini, Razieh Chaharmahali, Alireza Askari, Sajad Alizad, Mosab Kaseem
{"title":"揭示了净化和合金元素对镁合金腐蚀性能和钝化的影响","authors":"Arash Fattah-alhosseini, Razieh Chaharmahali, Alireza Askari, Sajad Alizad, Mosab Kaseem","doi":"10.1016/j.jma.2024.11.023","DOIUrl":null,"url":null,"abstract":"The passivation of magnesium (Mg)-based alloys is an electrochemical behavior. The formation of a protective surface film results in passivation. The composition of this surface layer is influenced by the substrate alloy, which in turn affects the passive behavior. Recent studies have examined the composition of the surface film when Mg alloys undergo corrosion. Most of these studies have focused on the presence of Mg hydroxide (Mg(OH)<sub>2</sub>) and MgO in the layer. However, a systematic examination of the impact of alloying elements on the stability of the passive layer is lacking. The essential question for developing a corrosion-resistant Mg-based alloy with passive protection is: which are the best and most efficient elements that can form a passive layer when alloyed with Mg? Passivity in a Mg alloy could be achieved by using a non-equilibrium technique to supersaturate the matrix phase with a high concentration of a strong passivating element. This review paper examines and explores the potential of creating a passive Mg-based alloy using metallurgical methods, like alloying and purification. Additionally, this paper explains key concepts about the passivity of Mg alloys and proposes possible methods to create a passive Mg alloy.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"85 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the impact of purification and alloying elements on corrosion performance and passivation of magnesium alloys\",\"authors\":\"Arash Fattah-alhosseini, Razieh Chaharmahali, Alireza Askari, Sajad Alizad, Mosab Kaseem\",\"doi\":\"10.1016/j.jma.2024.11.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The passivation of magnesium (Mg)-based alloys is an electrochemical behavior. The formation of a protective surface film results in passivation. The composition of this surface layer is influenced by the substrate alloy, which in turn affects the passive behavior. Recent studies have examined the composition of the surface film when Mg alloys undergo corrosion. Most of these studies have focused on the presence of Mg hydroxide (Mg(OH)<sub>2</sub>) and MgO in the layer. However, a systematic examination of the impact of alloying elements on the stability of the passive layer is lacking. The essential question for developing a corrosion-resistant Mg-based alloy with passive protection is: which are the best and most efficient elements that can form a passive layer when alloyed with Mg? Passivity in a Mg alloy could be achieved by using a non-equilibrium technique to supersaturate the matrix phase with a high concentration of a strong passivating element. This review paper examines and explores the potential of creating a passive Mg-based alloy using metallurgical methods, like alloying and purification. Additionally, this paper explains key concepts about the passivity of Mg alloys and proposes possible methods to create a passive Mg alloy.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2024.11.023\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.11.023","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

镁基合金的钝化是一种电化学行为。保护性表面膜的形成导致钝化。该表面层的组成受基体合金的影响,而基体合金又反过来影响其被动行为。最近的研究考察了镁合金受腐蚀时表面膜的组成。这些研究大多集中在氢氧化镁(Mg(OH)2)和MgO在层中的存在。然而,缺乏对合金元素对钝化层稳定性影响的系统研究。开发具有钝化保护的耐腐蚀镁基合金的关键问题是:当与Mg合金形成钝化层时,哪些是最好和最有效的元素?镁合金的钝化可以通过使用非平衡技术使基体相过饱和并加入高浓度的强钝化元素来实现。本文综述并探讨了利用合金化和提纯等冶金方法制备被动镁基合金的潜力。此外,本文还解释了镁合金钝化的关键概念,并提出了制造钝化镁合金的可能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unraveling the impact of purification and alloying elements on corrosion performance and passivation of magnesium alloys
The passivation of magnesium (Mg)-based alloys is an electrochemical behavior. The formation of a protective surface film results in passivation. The composition of this surface layer is influenced by the substrate alloy, which in turn affects the passive behavior. Recent studies have examined the composition of the surface film when Mg alloys undergo corrosion. Most of these studies have focused on the presence of Mg hydroxide (Mg(OH)2) and MgO in the layer. However, a systematic examination of the impact of alloying elements on the stability of the passive layer is lacking. The essential question for developing a corrosion-resistant Mg-based alloy with passive protection is: which are the best and most efficient elements that can form a passive layer when alloyed with Mg? Passivity in a Mg alloy could be achieved by using a non-equilibrium technique to supersaturate the matrix phase with a high concentration of a strong passivating element. This review paper examines and explores the potential of creating a passive Mg-based alloy using metallurgical methods, like alloying and purification. Additionally, this paper explains key concepts about the passivity of Mg alloys and proposes possible methods to create a passive Mg alloy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Spatial mapping of the localized corrosion behavior of a magnesium alloy AZ31B tungsten inert gas weld An overview of RE-Mg-based alloys for hydrogen storage: Structure, properties, progresses and perspectives Direct bonding of AZ31B and ZrO2 induced by interfacial sono-oxidation reaction at a low temperature From macro-, through meso- to micro-scale: Densification behavior, deformation response and microstructural evolution of selective laser melted Mg-RE alloy Enhanced high-temperature strength of a Mg-4Sn-3Al-1 Zn alloy with good thermal stability via Mg2Sn precipitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1