L. Soret, F. González-Galindo, J.-C. Gérard, I. R. Thomas, B. Ristic, Y. Willame, A. C. Vandaele, B. Hubert, F. Lefèvre, F. Daerden, M. R. Patel
{"title":"火星南极冬季极地地区的紫外线NO和可见O2夜光:统计研究和模式比较","authors":"L. Soret, F. González-Galindo, J.-C. Gérard, I. R. Thomas, B. Ristic, Y. Willame, A. C. Vandaele, B. Hubert, F. Lefèvre, F. Daerden, M. R. Patel","doi":"10.1029/2024JE008620","DOIUrl":null,"url":null,"abstract":"<p>The Mars NO and the O<sub>2</sub> nightglow are produced by the recombination of atoms produced on the dayside by photodissociation and transported to the nightside. These emissions are tracers of the summer to winter pole dynamics in the upper Mars atmosphere. The UV-visible (UVIS) channel of the Nadir and Occultation for MArs Discovery (NOMAD) spectrometer onboard Trace Gas Orbiter (TGO) is the first instrument able to simultaneously monitor both nightglow emissions. Observations by NOMAD/UVIS during the first part of the Martian year show that both the NO and O<sub>2</sub> nightglow emissions are enhanced near the southern winter pole. Their mean brightnesses are 15 and 108 kR, respectively. These nightglow emissions generally occur between 30 and 60 km, the NO emitting layer being consistently located ∼10 km higher than the O<sub>2</sub> nightglow layer. Numerical simulations with the Mars Planetary Climate Model (MPCM, v6.1) properly reproduce the nightglow brightness but tend to overestimate the NO peak altitude by ∼10 km. These results suggest that the atomic oxygen density is correctly predicted by the model but that the nitrogen density altitude distribution might not be properly modeled.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultraviolet NO and Visible O2 Nightglow in the Mars Southern Winter Polar Region: Statistical Study and Model Comparison\",\"authors\":\"L. Soret, F. González-Galindo, J.-C. Gérard, I. R. Thomas, B. Ristic, Y. Willame, A. C. Vandaele, B. Hubert, F. Lefèvre, F. Daerden, M. R. Patel\",\"doi\":\"10.1029/2024JE008620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Mars NO and the O<sub>2</sub> nightglow are produced by the recombination of atoms produced on the dayside by photodissociation and transported to the nightside. These emissions are tracers of the summer to winter pole dynamics in the upper Mars atmosphere. The UV-visible (UVIS) channel of the Nadir and Occultation for MArs Discovery (NOMAD) spectrometer onboard Trace Gas Orbiter (TGO) is the first instrument able to simultaneously monitor both nightglow emissions. Observations by NOMAD/UVIS during the first part of the Martian year show that both the NO and O<sub>2</sub> nightglow emissions are enhanced near the southern winter pole. Their mean brightnesses are 15 and 108 kR, respectively. These nightglow emissions generally occur between 30 and 60 km, the NO emitting layer being consistently located ∼10 km higher than the O<sub>2</sub> nightglow layer. Numerical simulations with the Mars Planetary Climate Model (MPCM, v6.1) properly reproduce the nightglow brightness but tend to overestimate the NO peak altitude by ∼10 km. These results suggest that the atomic oxygen density is correctly predicted by the model but that the nitrogen density altitude distribution might not be properly modeled.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 12\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008620\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008620","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Ultraviolet NO and Visible O2 Nightglow in the Mars Southern Winter Polar Region: Statistical Study and Model Comparison
The Mars NO and the O2 nightglow are produced by the recombination of atoms produced on the dayside by photodissociation and transported to the nightside. These emissions are tracers of the summer to winter pole dynamics in the upper Mars atmosphere. The UV-visible (UVIS) channel of the Nadir and Occultation for MArs Discovery (NOMAD) spectrometer onboard Trace Gas Orbiter (TGO) is the first instrument able to simultaneously monitor both nightglow emissions. Observations by NOMAD/UVIS during the first part of the Martian year show that both the NO and O2 nightglow emissions are enhanced near the southern winter pole. Their mean brightnesses are 15 and 108 kR, respectively. These nightglow emissions generally occur between 30 and 60 km, the NO emitting layer being consistently located ∼10 km higher than the O2 nightglow layer. Numerical simulations with the Mars Planetary Climate Model (MPCM, v6.1) properly reproduce the nightglow brightness but tend to overestimate the NO peak altitude by ∼10 km. These results suggest that the atomic oxygen density is correctly predicted by the model but that the nitrogen density altitude distribution might not be properly modeled.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.