{"title":"基于时间重分配多同步压缩变换的cnn - bilstm -注意机制模型的数字孪生脑电图发作预测。","authors":"Antara Ghosh, Debangshu Dey","doi":"10.1088/2057-1976/ad992c","DOIUrl":null,"url":null,"abstract":"<p><p>The prediction of epileptic seizures is a classical research problem, representing one of the most challenging tasks in the analysis of brain disorders. There is active research into digital twins (DT) for various healthcare applications, as they can transform research into customized and personalized healthcare. The widespread adoption of DT technology relies on ample patient data to ensure precise monitoring and decision-making, leveraging Machine Learning (ML) and Deep Learning (DL) algorithms. Given the non-stationarity of EEG recordings, characterized by substantial frequency variations over time, there is a notable preference for advanced time-frequency methods in seizure prediction. This research proposes a DT-based seizure prediction system by applying an advanced time-frequency analysis approach known as Time-Reassigned MultiSynchroSqueezing Transform (TMSST) to EEG data to extract patient-specific impulse features and subsequently, a Deep Learning strategy, CNN-BiLSTM-Attention mechanism model is utilized in learning and classifying features for seizure prediction. The proposed architecture is named as 'Digital Twin-Net'. By estimating the group delay in the time direction, TMSST produces the frequency components that are responsible for the EEG signal's temporal behavior and those time-frequency signatures are learned by the developed CNN-BiLSTM-Attention mechanism model. Thus the combination acts as a digital twin of a patient for the prediction of epileptic seizures. The experimental results showed that the suggested approach achieved an accuracy of 99.70% when tested on 22 patients from the publicly accessible CHB-MIT dataset. The proposed method surpasses previous solutions in terms of overall performance. Consequently, the suggested method can be regarded as an efficient approach to EEG seizure prediction.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital Twin for EEG seizure prediction using time reassigned Multisynchrosqueezing transform-based CNN-BiLSTM-Attention mechanism model.\",\"authors\":\"Antara Ghosh, Debangshu Dey\",\"doi\":\"10.1088/2057-1976/ad992c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prediction of epileptic seizures is a classical research problem, representing one of the most challenging tasks in the analysis of brain disorders. There is active research into digital twins (DT) for various healthcare applications, as they can transform research into customized and personalized healthcare. The widespread adoption of DT technology relies on ample patient data to ensure precise monitoring and decision-making, leveraging Machine Learning (ML) and Deep Learning (DL) algorithms. Given the non-stationarity of EEG recordings, characterized by substantial frequency variations over time, there is a notable preference for advanced time-frequency methods in seizure prediction. This research proposes a DT-based seizure prediction system by applying an advanced time-frequency analysis approach known as Time-Reassigned MultiSynchroSqueezing Transform (TMSST) to EEG data to extract patient-specific impulse features and subsequently, a Deep Learning strategy, CNN-BiLSTM-Attention mechanism model is utilized in learning and classifying features for seizure prediction. The proposed architecture is named as 'Digital Twin-Net'. By estimating the group delay in the time direction, TMSST produces the frequency components that are responsible for the EEG signal's temporal behavior and those time-frequency signatures are learned by the developed CNN-BiLSTM-Attention mechanism model. Thus the combination acts as a digital twin of a patient for the prediction of epileptic seizures. The experimental results showed that the suggested approach achieved an accuracy of 99.70% when tested on 22 patients from the publicly accessible CHB-MIT dataset. The proposed method surpasses previous solutions in terms of overall performance. Consequently, the suggested method can be regarded as an efficient approach to EEG seizure prediction.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad992c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad992c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Digital Twin for EEG seizure prediction using time reassigned Multisynchrosqueezing transform-based CNN-BiLSTM-Attention mechanism model.
The prediction of epileptic seizures is a classical research problem, representing one of the most challenging tasks in the analysis of brain disorders. There is active research into digital twins (DT) for various healthcare applications, as they can transform research into customized and personalized healthcare. The widespread adoption of DT technology relies on ample patient data to ensure precise monitoring and decision-making, leveraging Machine Learning (ML) and Deep Learning (DL) algorithms. Given the non-stationarity of EEG recordings, characterized by substantial frequency variations over time, there is a notable preference for advanced time-frequency methods in seizure prediction. This research proposes a DT-based seizure prediction system by applying an advanced time-frequency analysis approach known as Time-Reassigned MultiSynchroSqueezing Transform (TMSST) to EEG data to extract patient-specific impulse features and subsequently, a Deep Learning strategy, CNN-BiLSTM-Attention mechanism model is utilized in learning and classifying features for seizure prediction. The proposed architecture is named as 'Digital Twin-Net'. By estimating the group delay in the time direction, TMSST produces the frequency components that are responsible for the EEG signal's temporal behavior and those time-frequency signatures are learned by the developed CNN-BiLSTM-Attention mechanism model. Thus the combination acts as a digital twin of a patient for the prediction of epileptic seizures. The experimental results showed that the suggested approach achieved an accuracy of 99.70% when tested on 22 patients from the publicly accessible CHB-MIT dataset. The proposed method surpasses previous solutions in terms of overall performance. Consequently, the suggested method can be regarded as an efficient approach to EEG seizure prediction.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.