使用蒙特卡罗模拟验证剂量学程序(Olinda & IDAC)评估177LuPSMA治疗转移性去势抵抗性前列腺癌(mCRPC)的吸收剂量。

IF 3 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING EJNMMI Physics Pub Date : 2024-12-03 DOI:10.1186/s40658-024-00691-7
Sirwan Maroufpour, Kamran Aryana, Shahrokh Nasseri, Zahra Fazeli, Hossein Arabi, Mehdi Momennezhad
{"title":"使用蒙特卡罗模拟验证剂量学程序(Olinda & IDAC)评估177LuPSMA治疗转移性去势抵抗性前列腺癌(mCRPC)的吸收剂量。","authors":"Sirwan Maroufpour, Kamran Aryana, Shahrokh Nasseri, Zahra Fazeli, Hossein Arabi, Mehdi Momennezhad","doi":"10.1186/s40658-024-00691-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Clinical trials have yielded promising results for <sup>177</sup>Lutetium Prostate Specific Membrane Antigen (<sup>177</sup>Lu-PSMA) therapy in metastatic castration resistant prostate cancer (mCRPC) patients. However, the development of precise methods for internal dosimetry and accurate dose estimation has been considered ongoing research. This study aimed to calculate the absorbed dose to the critical organs and metastasis regions using GATE 9.0 Monte Carlo simulation (MCS) as a gold standard to compare the OLINDA 1.1 and IDAC 2.1 software.</p><p><strong>Material and methods: </strong>This study investigated absorbed doses to different organs in 9 mCRPC patients during their first treatment cycle. Whole-body planar images were acquired at 1 ± 0.5, 4 ± 0.5, 24 ± 2, 48 ± 2, 72 ± 2, and 144 ± 2 h post-injection, with SPECT/CT images obtained at 24 ± 2 h. Absorbed doses were calculated for five organs and the entire metastasis regions using GATE, OLINDA, and IDAC platforms. The spherical method was used to determine and compare the absorbed doses in metastatic regions and undefined organs in OLINDA and IDAC Phantom.</p><p><strong>Results: </strong>The organ-absorbed dose calculations produced by GATE were consistent with those obtained from OLINDA and IDAC. The average percentage differences in absorbed dose for all organs between Monte Carlo calculations and the estimated from IDAC and OLINDA were -0.24 ± 2.14% and 5.16 ± 5.66%, respectively. There was a significant difference between GATE and both IDAC (17.55 ± 29.1%) and OLINDA (25.86 ± 18.04%) in determining absorbed doses to metastatic areas using the spherical model.</p><p><strong>Conclusion: </strong>The absorbed dose of organs in the first treatment cycle remained below tolerable limits. However, cumulative absorbed doses should be considered for the administered activities in the next cycles of treatment. While Monte Carlo, IDAC, and OLINDA results were aligned for organ dose calculations, patient-specific dosimetry may be necessary due to anatomical and functional changes. Accurate dose estimation for undefined organs and metastatic regions using the spherical model is significantly influenced by tissue density, highlighting the value of CT imaging.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"102"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612135/pdf/","citationCount":"0","resultStr":"{\"title\":\"Validation of dosimetry programs (Olinda & IDAC) for evaluation of absorbed dose in <sup>177</sup>LuPSMA therapy of metastatic castration-resistant prostate cancer (mCRPC) using Monte Carlo simulation.\",\"authors\":\"Sirwan Maroufpour, Kamran Aryana, Shahrokh Nasseri, Zahra Fazeli, Hossein Arabi, Mehdi Momennezhad\",\"doi\":\"10.1186/s40658-024-00691-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Clinical trials have yielded promising results for <sup>177</sup>Lutetium Prostate Specific Membrane Antigen (<sup>177</sup>Lu-PSMA) therapy in metastatic castration resistant prostate cancer (mCRPC) patients. However, the development of precise methods for internal dosimetry and accurate dose estimation has been considered ongoing research. This study aimed to calculate the absorbed dose to the critical organs and metastasis regions using GATE 9.0 Monte Carlo simulation (MCS) as a gold standard to compare the OLINDA 1.1 and IDAC 2.1 software.</p><p><strong>Material and methods: </strong>This study investigated absorbed doses to different organs in 9 mCRPC patients during their first treatment cycle. Whole-body planar images were acquired at 1 ± 0.5, 4 ± 0.5, 24 ± 2, 48 ± 2, 72 ± 2, and 144 ± 2 h post-injection, with SPECT/CT images obtained at 24 ± 2 h. Absorbed doses were calculated for five organs and the entire metastasis regions using GATE, OLINDA, and IDAC platforms. The spherical method was used to determine and compare the absorbed doses in metastatic regions and undefined organs in OLINDA and IDAC Phantom.</p><p><strong>Results: </strong>The organ-absorbed dose calculations produced by GATE were consistent with those obtained from OLINDA and IDAC. The average percentage differences in absorbed dose for all organs between Monte Carlo calculations and the estimated from IDAC and OLINDA were -0.24 ± 2.14% and 5.16 ± 5.66%, respectively. There was a significant difference between GATE and both IDAC (17.55 ± 29.1%) and OLINDA (25.86 ± 18.04%) in determining absorbed doses to metastatic areas using the spherical model.</p><p><strong>Conclusion: </strong>The absorbed dose of organs in the first treatment cycle remained below tolerable limits. However, cumulative absorbed doses should be considered for the administered activities in the next cycles of treatment. While Monte Carlo, IDAC, and OLINDA results were aligned for organ dose calculations, patient-specific dosimetry may be necessary due to anatomical and functional changes. Accurate dose estimation for undefined organs and metastatic regions using the spherical model is significantly influenced by tissue density, highlighting the value of CT imaging.</p>\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"11 1\",\"pages\":\"102\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612135/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-024-00691-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00691-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:177Lutetium前列腺特异性膜抗原(177Lu-PSMA)治疗转移性去势抵抗性前列腺癌(mCRPC)患者的临床试验取得了令人鼓舞的结果。然而,发展精确的内剂量测定方法和精确的剂量估计一直被认为是正在进行的研究。本研究旨在以GATE 9.0蒙特卡罗模拟(MCS)作为金标准,计算关键器官和转移区域的吸收剂量,比较OLINDA 1.1和IDAC 2.1软件。材料和方法:本研究调查了9例mCRPC患者在第一个治疗周期中不同器官的吸收剂量。注射后1±0.5、4±0.5、24±2、48±2、72±2和144±2 h获得全身平面图像,24±2 h获得SPECT/CT图像。使用GATE、OLINDA和IDAC平台计算5个器官和整个转移区域的吸收剂量。采用球形法测定和比较OLINDA和IDAC幻影转移区和未定义器官的吸收剂量。结果:GATE计算的器官吸收剂量与OLINDA和IDAC计算的结果一致。蒙特卡罗计算与IDAC和OLINDA估计的各器官吸收剂量的平均百分比差异分别为-0.24±2.14%和5.16±5.66%。在球形模型中,GATE与IDAC(17.55±29.1%)和OLINDA(25.86±18.04%)在确定转移区吸收剂量方面存在显著差异。结论:第一个治疗周期器官吸收剂量仍低于耐受限度。但是,在下一个治疗周期中,应考虑给药活动的累积吸收剂量。虽然Monte Carlo、IDAC和OLINDA的结果与器官剂量计算一致,但由于解剖和功能的变化,可能需要患者特异性剂量测定。使用球形模型对未定义器官和转移区域的准确剂量估计受组织密度的显著影响,突出了CT成像的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Validation of dosimetry programs (Olinda & IDAC) for evaluation of absorbed dose in 177LuPSMA therapy of metastatic castration-resistant prostate cancer (mCRPC) using Monte Carlo simulation.

Purpose: Clinical trials have yielded promising results for 177Lutetium Prostate Specific Membrane Antigen (177Lu-PSMA) therapy in metastatic castration resistant prostate cancer (mCRPC) patients. However, the development of precise methods for internal dosimetry and accurate dose estimation has been considered ongoing research. This study aimed to calculate the absorbed dose to the critical organs and metastasis regions using GATE 9.0 Monte Carlo simulation (MCS) as a gold standard to compare the OLINDA 1.1 and IDAC 2.1 software.

Material and methods: This study investigated absorbed doses to different organs in 9 mCRPC patients during their first treatment cycle. Whole-body planar images were acquired at 1 ± 0.5, 4 ± 0.5, 24 ± 2, 48 ± 2, 72 ± 2, and 144 ± 2 h post-injection, with SPECT/CT images obtained at 24 ± 2 h. Absorbed doses were calculated for five organs and the entire metastasis regions using GATE, OLINDA, and IDAC platforms. The spherical method was used to determine and compare the absorbed doses in metastatic regions and undefined organs in OLINDA and IDAC Phantom.

Results: The organ-absorbed dose calculations produced by GATE were consistent with those obtained from OLINDA and IDAC. The average percentage differences in absorbed dose for all organs between Monte Carlo calculations and the estimated from IDAC and OLINDA were -0.24 ± 2.14% and 5.16 ± 5.66%, respectively. There was a significant difference between GATE and both IDAC (17.55 ± 29.1%) and OLINDA (25.86 ± 18.04%) in determining absorbed doses to metastatic areas using the spherical model.

Conclusion: The absorbed dose of organs in the first treatment cycle remained below tolerable limits. However, cumulative absorbed doses should be considered for the administered activities in the next cycles of treatment. While Monte Carlo, IDAC, and OLINDA results were aligned for organ dose calculations, patient-specific dosimetry may be necessary due to anatomical and functional changes. Accurate dose estimation for undefined organs and metastatic regions using the spherical model is significantly influenced by tissue density, highlighting the value of CT imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EJNMMI Physics
EJNMMI Physics Physics and Astronomy-Radiation
CiteScore
6.70
自引率
10.00%
发文量
78
审稿时长
13 weeks
期刊介绍: EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.
期刊最新文献
Phantom-based investigation of block sequential regularised expectation maximisation (BSREM) reconstruction for zirconium-89 PET-CT for varied count levels. Validation of a data-driven motion-compensated PET brain image reconstruction algorithm in clinical patients using four radiotracers. A review of state-of-the-art resolution improvement techniques in SPECT imaging. Count-rate management in 131I SPECT/CT calibration. Correction: Radiopharmacokinetic modelling and radiation dose assessment of 223Ra used for treatment of metastatic castration-resistant prostate cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1