张拉- waxd仪:一种用于高拉伸弹性体中拉伸诱导的节段定向原位研究的改进和精确系统

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Chinese Journal of Polymer Science Pub Date : 2024-10-10 DOI:10.1007/s10118-024-3201-x
Xiang Shi
{"title":"张拉- waxd仪:一种用于高拉伸弹性体中拉伸诱导的节段定向原位研究的改进和精确系统","authors":"Xiang Shi","doi":"10.1007/s10118-024-3201-x","DOIUrl":null,"url":null,"abstract":"<div><p>An improved X-ray apparatus that combines tensile testing and X-ray diffraction has been designed and constructed to conduct timeresolved experiments during uniaxial stretching. By utilizing mortise-like clamping jaws and dogbone-shaped specimens, this setup allows for the simultaneous recording of high-quality mechanical responses and 2D diffraction patterns due to the minimization of experimental errors from sample slippage or premature fracture. Furthermore, the local extension ratio can be accurately determined based on thickness variation, and the Hermans' orientation function was demonstrated to be a reliable method with high accuracy to calculate the segmental orientation parameter 〈P<sub>2</sub>〉 in elastomeric samples under high degree of stretching. In summary, this innovative tensile-WAXD instrument has proven to be a promising and powerful technique for investigating the “stress-deformation-segmental orientation” relationship in elastomers with high extensibilities.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 12","pages":"2002 - 2010"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile-WAXD Apparatus: An Improved and Accurate System for the In situ Study of Extension-induced Segmental Orientation in Highly Stretched Elastomer\",\"authors\":\"Xiang Shi\",\"doi\":\"10.1007/s10118-024-3201-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An improved X-ray apparatus that combines tensile testing and X-ray diffraction has been designed and constructed to conduct timeresolved experiments during uniaxial stretching. By utilizing mortise-like clamping jaws and dogbone-shaped specimens, this setup allows for the simultaneous recording of high-quality mechanical responses and 2D diffraction patterns due to the minimization of experimental errors from sample slippage or premature fracture. Furthermore, the local extension ratio can be accurately determined based on thickness variation, and the Hermans' orientation function was demonstrated to be a reliable method with high accuracy to calculate the segmental orientation parameter 〈P<sub>2</sub>〉 in elastomeric samples under high degree of stretching. In summary, this innovative tensile-WAXD instrument has proven to be a promising and powerful technique for investigating the “stress-deformation-segmental orientation” relationship in elastomers with high extensibilities.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"42 12\",\"pages\":\"2002 - 2010\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3201-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3201-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

设计并构建了一种改进的x射线仪器,该仪器结合了拉伸测试和x射线衍射,可以在单轴拉伸过程中进行时间分辨实验。通过使用榫形夹钳和狗骨形试样,该装置允许同时记录高质量的机械响应和二维衍射模式,因为样品滑移或过早断裂的实验误差最小化。此外,基于厚度变化可以准确地确定局部延伸比,证明了Hermans取向函数是一种可靠的高精度方法,可以计算高拉伸程度弹性体样品中的节段取向参数< P2 >。总之,这种创新的拉伸- waxd仪器已被证明是一种有前途和强大的技术,用于研究具有高延展性的弹性体的“应力-变形-段取向”关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tensile-WAXD Apparatus: An Improved and Accurate System for the In situ Study of Extension-induced Segmental Orientation in Highly Stretched Elastomer

An improved X-ray apparatus that combines tensile testing and X-ray diffraction has been designed and constructed to conduct timeresolved experiments during uniaxial stretching. By utilizing mortise-like clamping jaws and dogbone-shaped specimens, this setup allows for the simultaneous recording of high-quality mechanical responses and 2D diffraction patterns due to the minimization of experimental errors from sample slippage or premature fracture. Furthermore, the local extension ratio can be accurately determined based on thickness variation, and the Hermans' orientation function was demonstrated to be a reliable method with high accuracy to calculate the segmental orientation parameter 〈P2〉 in elastomeric samples under high degree of stretching. In summary, this innovative tensile-WAXD instrument has proven to be a promising and powerful technique for investigating the “stress-deformation-segmental orientation” relationship in elastomers with high extensibilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
期刊最新文献
Boroxine Crystalline Covalent Organic Frameworks Based Single-ion Quasi-solid-state Conductor in Lithium-ion Battery CO2-Sourced Poly(chloropropylene carbonate) with High Flame-Retardant Performance Influence of the Type of Precipitant on the Structure of Phase-inversion Polyamido-imide Membranes Advancements and Applications of 4D Bioprinting in Biomedical Science Bio-based Epoxy Composites Demonstrating High Temperature Breakdown Strength and Thermal Conductivity for High Voltage Insulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1