有机-无机结合等离子体电解氧化制备AZ31镁合金高耐蚀光催化杂化涂层

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2024-12-07 DOI:10.1016/j.jma.2024.11.027
Talitha Tara Thanaa, Mohammad Aadil, Alireza Askari, Arash Fattah-alhosseini, Mohammad Alkaseem, Mosab Kaseem
{"title":"有机-无机结合等离子体电解氧化制备AZ31镁合金高耐蚀光催化杂化涂层","authors":"Talitha Tara Thanaa, Mohammad Aadil, Alireza Askari, Arash Fattah-alhosseini, Mohammad Alkaseem, Mosab Kaseem","doi":"10.1016/j.jma.2024.11.027","DOIUrl":null,"url":null,"abstract":"This study explores the development of an organic-inorganic hybrid coating to enhance the corrosion resistance and photocatalytic properties of AZ31 Mg alloy modified by plasma electrolytic oxidation (PEO). The PEO process typically generates a porous oxide layer, which can reduce corrosion protection by allowing corrosive agents to penetrate the substrate. To address this limitation, phenopyridine (PHEN) and 2-methylimidazole (2-IMD) were incorporated into the PEO surface to form a robust organic layer on the Mg alloy. Potassium hydroxide (KOH) was used to adjust the pH, improving the interaction and solubility between the organic molecules and the PEO coating. The hybrid coating exhibited unique twig-like surface structures that contributed to forming a multifunctional coating with high corrosion resistance and superior photocatalytic activity. The PEO-PHEN-2IMD sample on the Mg alloy demonstrated exceptional corrosion resistance, with the lowest corrosion current density (<em>I<sub>corr</sub></em>) of 1.92 × 10<sup>-</sup>¹⁰ A/cm², a high corrosion potential (<em>E<sub>corr</sub></em>), and the highest top layer resistance (<em>R<sub>top</sub></em>) of 2.57 × 10<sup>6</sup> Ω·cm², indicating excellent barrier properties. Additionally, the coating achieved complete (100%) degradation of methylene blue (MB) within 30 min under visible light. Density Functional Theory (DFT) calculations provide deeper insights into the bonding mechanisms and interaction stability between PHEN, 2-IMD, and the PEO layer on the Mg alloy and MB dye. These findings confirmed the enhanced performance of the hybrid coating in both corrosion resistance and photocatalytic applications.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"28 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly corrosion-resistant and photocatalytic hybrid coating on AZ31 Mg alloy via plasma electrolytic oxidation with organic-inorganic integration\",\"authors\":\"Talitha Tara Thanaa, Mohammad Aadil, Alireza Askari, Arash Fattah-alhosseini, Mohammad Alkaseem, Mosab Kaseem\",\"doi\":\"10.1016/j.jma.2024.11.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the development of an organic-inorganic hybrid coating to enhance the corrosion resistance and photocatalytic properties of AZ31 Mg alloy modified by plasma electrolytic oxidation (PEO). The PEO process typically generates a porous oxide layer, which can reduce corrosion protection by allowing corrosive agents to penetrate the substrate. To address this limitation, phenopyridine (PHEN) and 2-methylimidazole (2-IMD) were incorporated into the PEO surface to form a robust organic layer on the Mg alloy. Potassium hydroxide (KOH) was used to adjust the pH, improving the interaction and solubility between the organic molecules and the PEO coating. The hybrid coating exhibited unique twig-like surface structures that contributed to forming a multifunctional coating with high corrosion resistance and superior photocatalytic activity. The PEO-PHEN-2IMD sample on the Mg alloy demonstrated exceptional corrosion resistance, with the lowest corrosion current density (<em>I<sub>corr</sub></em>) of 1.92 × 10<sup>-</sup>¹⁰ A/cm², a high corrosion potential (<em>E<sub>corr</sub></em>), and the highest top layer resistance (<em>R<sub>top</sub></em>) of 2.57 × 10<sup>6</sup> Ω·cm², indicating excellent barrier properties. Additionally, the coating achieved complete (100%) degradation of methylene blue (MB) within 30 min under visible light. Density Functional Theory (DFT) calculations provide deeper insights into the bonding mechanisms and interaction stability between PHEN, 2-IMD, and the PEO layer on the Mg alloy and MB dye. These findings confirmed the enhanced performance of the hybrid coating in both corrosion resistance and photocatalytic applications.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2024.11.027\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.11.027","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

为了提高等离子体电解氧化(PEO)改性AZ31镁合金的耐蚀性和光催化性能,研究了一种有机-无机杂化涂层的开发。PEO工艺通常会产生多孔氧化层,这可以通过允许腐蚀剂渗透基材来降低腐蚀保护。为了解决这一限制,我们将苯吡啶(phenopyridine, PHEN)和2-甲基咪唑(2-IMD)掺入到PEO表面,在镁合金上形成坚固的有机层。采用氢氧化钾(KOH)调节pH,提高有机分子与PEO涂层的相互作用和溶解度。该杂化涂层具有独特的枝状表面结构,有助于形成具有高耐腐蚀性和优异光催化活性的多功能涂层。镁合金上peo - phen2 imd样品表现出优异的耐腐蚀性,最低腐蚀电流密度(Icorr)为1.92 × 10-¹⁰A/cm²,高腐蚀电位(Ecorr),最高顶层电阻(Rtop)为2.57 × 106 Ω·cm²,表明优异的阻隔性能。此外,该涂层在可见光下30分钟内实现了亚甲基蓝(MB)的完全(100%)降解。密度泛函理论(DFT)的计算为镁合金和MB染料上PHEN、2-IMD和PEO层之间的键合机制和相互作用稳定性提供了更深入的见解。这些发现证实了混合涂层在耐腐蚀和光催化应用方面的增强性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly corrosion-resistant and photocatalytic hybrid coating on AZ31 Mg alloy via plasma electrolytic oxidation with organic-inorganic integration
This study explores the development of an organic-inorganic hybrid coating to enhance the corrosion resistance and photocatalytic properties of AZ31 Mg alloy modified by plasma electrolytic oxidation (PEO). The PEO process typically generates a porous oxide layer, which can reduce corrosion protection by allowing corrosive agents to penetrate the substrate. To address this limitation, phenopyridine (PHEN) and 2-methylimidazole (2-IMD) were incorporated into the PEO surface to form a robust organic layer on the Mg alloy. Potassium hydroxide (KOH) was used to adjust the pH, improving the interaction and solubility between the organic molecules and the PEO coating. The hybrid coating exhibited unique twig-like surface structures that contributed to forming a multifunctional coating with high corrosion resistance and superior photocatalytic activity. The PEO-PHEN-2IMD sample on the Mg alloy demonstrated exceptional corrosion resistance, with the lowest corrosion current density (Icorr) of 1.92 × 10-¹⁰ A/cm², a high corrosion potential (Ecorr), and the highest top layer resistance (Rtop) of 2.57 × 106 Ω·cm², indicating excellent barrier properties. Additionally, the coating achieved complete (100%) degradation of methylene blue (MB) within 30 min under visible light. Density Functional Theory (DFT) calculations provide deeper insights into the bonding mechanisms and interaction stability between PHEN, 2-IMD, and the PEO layer on the Mg alloy and MB dye. These findings confirmed the enhanced performance of the hybrid coating in both corrosion resistance and photocatalytic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Spatial mapping of the localized corrosion behavior of a magnesium alloy AZ31B tungsten inert gas weld An overview of RE-Mg-based alloys for hydrogen storage: Structure, properties, progresses and perspectives Direct bonding of AZ31B and ZrO2 induced by interfacial sono-oxidation reaction at a low temperature From macro-, through meso- to micro-scale: Densification behavior, deformation response and microstructural evolution of selective laser melted Mg-RE alloy Enhanced high-temperature strength of a Mg-4Sn-3Al-1 Zn alloy with good thermal stability via Mg2Sn precipitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1